PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("mba, James A")
1.  In vitro anti-Onchocerca ochengi activities of extracts and chromatographic fractions of Craterispermum laurinum and Morinda lucida 
Background
Onchocerciasis caused by Onchocerca volvulus is the world’s second leading infectious cause of blindness. There is currently no cure for the disease. Ivermectin, the current drug of choice is only microfilaricidal and suboptimal response to it is increasingly being reported. Thus, in contributing to the search for a cure, crude extracts and chromatographic fractions of Craterispermum laurinum and Morinda lucida were screened in vitro, against the bovine and most popular model of the parasite, Onchocerca ochengi.
Methods
Extracted parasites were cultured in RPMI-1640 based media for 05 days in the presence of control drugs, test drugs or drug diluents only. Microfilarial motility was scored using microscopy while adult worm viability was determined biochemically by MTT/formazan colorimetry. Cytotoxicity and acute toxicity of active fractions were tested on monkey kidney epithelial cells (LLCMK2) and in Balb/c mice, respectively.
Results
Out of the 18 extracts screened, the methanolic extracts of the leaves of both plants recorded the highest activities against both the microfilariae (IC100 of 125 μg/ml for both extracts) and adult worms (IC100 of 250 μg/ml and 500 μg/ml for M. lucida and C. laurinum respectively). The most active chromatographic fraction was obtained from M. lucida and had an IC50 of 7.8 μg/ml and 15.63 μg/ml on microfilariae and adult worms respectively, while the most active fraction from C. laurinum had an IC50 of 15.63 μg/ml and 46.8 μg/ml, respectively on microfilariae and adult worms. The 50% cytotoxic concentration (CC50s) on LLCMK2 cells ranged from 15.625 μg/ml to 125 μg/ml for the active fractions. No acute toxicity was recorded for the extracts from both plants. Phytochemical analysis of the most active fractions revealed the presence of sterols, alkaloids, triterpenes, saponins and flavonoids.
Conclusions
This study validates the use of these plants by traditional health practitioners in managing the disease, and also suggests a new source for isolation of potential lead compounds against Onchocerca volvulus.
doi:10.1186/1472-6882-14-325
PMCID: PMC4162957  PMID: 25179014
Onchocerciasis; Medicinal plants; Toxicity; Phytochemical analysis
2.  Anti-Onchocerca activity and phytochemical analysis of an essential oil from Cyperus articulatus L 
Background
The lack of a safe and effective adult worm drug and the emergence of resistant animal parasite strains to the only recommended drug, the microfilaricide, ivermectin put many at risk of the devastating effects of the onchocerciasis. The present study was undertaken to investigate the acclaimed anti-Onchocerca activity of the roots/rhizomes of Cyperus articulatus in the traditional treatment of onchocerciasis in North Western Cameroon and to assess the plant as a new source of potential filaricidal lead compounds.
Methods
Crude extracts were prepared from the dried plant parts using hexane, methylene chloride and methanol. The antifilarial activity was evaluated in vitro on microfilariae (Mfs) and adult worms of the bovine derived Onchocerca ochengi, a close relative of Onchocerca volvulus. The viabilities of microfilariae and adult male worms were determined based on motility reduction, while for the adult female worms the viability was based on the standard MTT/formazan assay. Cytotoxicity of the active extract was assessed on monkey kidney epithelial cells in vitro and the selectivity indices (SI) were determined. Acute toxicity of the promising extract was investigated in mice. Chemical composition of the active extract was unraveled by GC/MS analysis.
Results
Only the hexane extract, an essential oil exhibited anti-Onchocerca activity. The oil killed both the microfilariae and adult worms of O. ochengi in a dose manner dependently, with IC50s of 23.4 μg/ml on the Mfs, 23.4 μg/ml on adult male worms and 31.25 μg/ml on the adult female worms. Selectivity indices were 4, 4, and 2.99 for Mfs, adult males and adult females, respectively. At a single limit dose of 2000 mg/kg body weight, none of 6 mice that received the essential oil by gavage died. GC/MS analysis revealed the presence of terpenoids, hydrocarbons and fatty acids or fatty acid derivatives as components of the oil.
Conclusions
The essential oil from the roots/rhizomes of Cyperus articulatus is active against O. ochengi microfilariae and adult worms in vitro in a dose dependent manner, hence may provide a source of new anti-filarial compounds. The results also support the traditional use of C. articulatus in the treatment of human onchocerciasis.
doi:10.1186/1472-6882-14-223
PMCID: PMC4099029  PMID: 24998345
Essential oil; Human onchocerciasis; Cyperus articulatus; Phytochemical analysis
3.  Anti-onchocerca Metabolites from Cyperus articulatus: Isolation, In Vitro Activity and In Silico ‘Drug-Likeness’ 
The aims of this investigation were to isolate active ingredients from the roots/rhizomes of Cyperus articulatus used as herbal medicine in Cameroon for the treatment of human onchocerciasis and to assess the efficacy of the metabolites on the Onchocerca worm. The antifilarial activity was evaluated in vitro on microfilariae (Mfs) and adult worms of the bovine derived Onchocerca ochengi, a close relative of Onchocerca volvulus. Cytotoxicity was assessed in vitro on monkey kidney epithelial cells. The structures of the active compounds were determined using spectroscopic methods and their drug-likeness evaluated using Lipinski parameters. Two secondary metabolites, AMJ1 [containing mustakone (1) as the major component] and linoleic acid or (9Z,12Z)-octadeca-9,12-dienoic acid (2) were isolated. Both compounds were found to kill both the microfilariae and adult worms of O. ochengi in a dose dependent manner. The IC50s for AMJ1 were 15.7 µg/mL for Mfs, 17.4 µg/mL for adult males and 21.9 µg/mL for adult female worms while for linoleic acid the values were, 15.7 µg/mL for Mfs, 31.0 µg/mL for adult males and 44.2 µg/mL for adult females. The present report provides the first ever evidence of the anti-Onchocerca efficacy of AMJ1 and linoleic acid. Thus, these secondary metabolites may provide a lead for design and development of new antifilarial agents.
Electronic supplementary material
The online version of this article (doi:10.1007/s13659-014-0023-5) contains supplementary material, which is available to authorized users.
doi:10.1007/s13659-014-0023-5
PMCID: PMC4111868  PMID: 25089243
Cyperus articulates; Linoleic acid; Microfilariae; Mustakone; Onchocerca ochengi; Onchocerca volvulus
4.  Anti-onchocerca Metabolites from Cyperus articulatus: Isolation, In Vitro Activity and In Silico ‘Drug-Likeness’ 
The aims of this investigation were to isolate active ingredients from the roots/rhizomes of Cyperus articulatus used as herbal medicine in Cameroon for the treatment of human onchocerciasis and to assess the efficacy of the metabolites on the Onchocerca worm. The antifilarial activity was evaluated in vitro on microfilariae (Mfs) and adult worms of the bovine derived Onchocerca ochengi, a close relative of Onchocerca volvulus. Cytotoxicity was assessed in vitro on monkey kidney epithelial cells. The structures of the active compounds were determined using spectroscopic methods and their drug-likeness evaluated using Lipinski parameters. Two secondary metabolites, AMJ1 [containing mustakone (1) as the major component] and linoleic acid or (9Z,12Z)-octadeca-9,12-dienoic acid (2) were isolated. Both compounds were found to kill both the microfilariae and adult worms of O. ochengi in a dose dependent manner. The IC50s for AMJ1 were 15.7 µg/mL for Mfs, 17.4 µg/mL for adult males and 21.9 µg/mL for adult female worms while for linoleic acid the values were, 15.7 µg/mL for Mfs, 31.0 µg/mL for adult males and 44.2 µg/mL for adult females. The present report provides the first ever evidence of the anti-Onchocerca efficacy of AMJ1 and linoleic acid. Thus, these secondary metabolites may provide a lead for design and development of new antifilarial agents.
Electronic supplementary material
The online version of this article (doi:10.1007/s13659-014-0023-5) contains supplementary material, which is available to authorized users.
doi:10.1007/s13659-014-0023-5
PMCID: PMC4111868  PMID: 25089243
Cyperus articulates; Linoleic acid; Microfilariae; Mustakone; Onchocerca ochengi; Onchocerca volvulus
5.  AfroDb: A Select Highly Potent and Diverse Natural Product Library from African Medicinal Plants 
PLoS ONE  2013;8(10):e78085.
Computer-aided drug design (CADD) often involves virtual screening (VS) of large compound datasets and the availability of such is vital for drug discovery protocols. We assess the bioactivity and “drug-likeness” of a relatively small but structurally diverse dataset (containing >1,000 compounds) from African medicinal plants, which have been tested and proven a wide range of biological activities. The geographical regions of collection of the medicinal plants cover the entire continent of Africa, based on data from literature sources and information from traditional healers. For each isolated compound, the three dimensional (3D) structure has been used to calculate physico-chemical properties used in the prediction of oral bioavailability on the basis of Lipinski’s “Rule of Five”. A comparative analysis has been carried out with the “drug-like”, “lead-like”, and “fragment-like” subsets, as well as with the Dictionary of Natural Products. A diversity analysis has been carried out in comparison with the ChemBridge diverse database. Furthermore, descriptors related to absorption, distribution, metabolism, excretion and toxicity (ADMET) have been used to predict the pharmacokinetic profile of the compounds within the dataset. Our results prove that drug discovery, beginning with natural products from the African flora, could be highly promising. The 3D structures are available and could be useful for virtual screening and natural product lead generation programs.
doi:10.1371/journal.pone.0078085
PMCID: PMC3813505  PMID: 24205103
6.  Assessing the pharmacokinetic profile of the CamMedNP natural products database: an in silico approach 
Background
Drug metabolism and pharmacokinetic (DMPK) assessment has come to occupy a place of interest during the early stages of drug discovery today. Computer-based methods are slowly gaining ground in this area and are often used as initial tools to eliminate compounds likely to present uninteresting pharmacokinetic profiles and unacceptable levels of toxicity from the list of potential drug candidates, hence cutting down the cost of the discovery of a drug.
Results
In the present study, we present an in silico assessment of the DMPK profile of our recently published natural products database of 1,859 unique compounds derived from 224 species of medicinal plants from the Cameroonian forest. In this analysis, we have used 46 computed physico-chemical properties or molecular descriptors to predict the absorption, distribution, metabolism and elimination (ADME) of the compounds. This survey demonstrated that about 50% of the compounds within the Cameroonian medicinal plant and natural products (CamMedNP) database are compliant, having properties which fall within the range of ADME properties of >95% of currently known drugs, while >73% of the compounds have ≤2 violations. Moreover, about 72% of the compounds within the corresponding ‘drug-like’ subset showed compliance.
Conclusions
In addition to the previously verified levels of ‘drug-likeness’ and the diversity and the wide range of measured biological activities, the compounds in the CamMedNP database show interesting DMPK profiles and, hence, could represent an important starting point for hit/lead discovery from medicinal plants in Africa.
doi:10.1186/2191-2858-3-10
PMCID: PMC3767462  PMID: 24229455
ADMET; Database collection; Descriptors; In silico; Medicinal plants; Natural products
7.  In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin 
Purpose
Drug metabolism and pharmacokinetics (DMPK) assessment has come to occupy a place of interest during the early stages of drug discovery today. The use of computer modelling to predict the DMPK and toxicity properties of a natural product library derived from medicinal plants from Central Africa (named ConMedNP). Material from some of the plant sources are currently employed in African Traditional Medicine.
Methods
Computer-based methods are slowly gaining ground in this area and are often used as preliminary criteria for the elimination of compounds likely to present uninteresting pharmacokinetic profiles and unacceptable levels of toxicity from the list of potential drug candidates, hence cutting down the cost of discovery of a drug.
In the present study, we present an in silico assessment of the DMPK and toxicity profile of a natural product library containing ~3,200 compounds, derived from 379 species of medicinal plants from 10 countries in the Congo Basin forests and savannas, which have been published in the literature. In this analysis, we have used 46 computed physico-chemical properties or molecular descriptors to predict the absorption, distribution, metabolism and elimination and toxicity (ADMET) of the compounds.
Results
This survey demonstrated that about 45% of the compounds within the ConMedNP compound library are compliant, having properties which fall within the range of ADME properties of 95% of currently known drugs, while about 69% of the compounds have ≤ 2 violations. Moreover, about 73% of the compounds within the corresponding “drug-like” subset showed compliance.
Conclusions
In addition to the verified levels of “drug-likeness”, diversity and the wide range of measured biological activities, the compounds from medicinal plants in Central Africa show interesting DMPK profiles and hence could represent an important starting point for hit/lead discovery.
Electronic supplementary material
The online version of this article (doi:10.1186/2193-9616-1-12) contains supplementary material, which is available to authorized users.
doi:10.1186/2193-9616-1-12
PMCID: PMC4230438  PMID: 25505657
ADMET; Drug discovery; Descriptors; In silico; Medicinal plants; Natural products
8.  CamMedNP: Building the Cameroonian 3D structural natural products database for virtual screening 
Background
Computer-aided drug design (CADD) often involves virtual screening (VS) of large compound datasets and the availability of such is vital for drug discovery protocols. We present CamMedNP - a new database beginning with more than 2,500 compounds of natural origin, along with some of their derivatives which were obtained through hemisynthesis. These are pure compounds which have been previously isolated and characterized using modern spectroscopic methods and published by several research teams spread across Cameroon.
Description
In the present study, 224 distinct medicinal plant species belonging to 55 plant families from the Cameroonian flora have been considered. About 80 % of these have been previously published and/or referenced in internationally recognized journals. For each compound, the optimized 3D structure, drug-like properties, plant source, collection site and currently known biological activities are given, as well as literature references. We have evaluated the “drug-likeness” of this database using Lipinski’s “Rule of Five”. A diversity analysis has been carried out in comparison with the ChemBridge diverse database.
Conclusion
CamMedNP could be highly useful for database screening and natural product lead generation programs.
doi:10.1186/1472-6882-13-88
PMCID: PMC3637470  PMID: 23590173
3D structures, Database collection; Natural products; Medicinal plants; Virtual screening
9.  Bioassay-guided discovery of antibacterial agents: in vitro screening of Peperomia vulcanica, Peperomia fernandopoioana and Scleria striatinux 
Background
The global burden of bacterial infections is high and has been further aggravated by increasing resistance to antibiotics. In the search for novel antibacterials, three medicinal plants: Peperomia vulcanica, Peperomia fernandopoioana (Piperaceae) and Scleria striatinux (Cyperaceae), were investigated for antibacterial activity and toxicity.
Methods
Crude extracts of these plants were tested by the disc diffusion method against six bacterial test organisms followed by bio-assay guided fractionation, isolation and testing of pure compounds. The minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations were measured by the microdilution method. The acute toxicity of the active extracts and cytotoxicity of the active compound were performed in mice and mammalian cells, respectively.
Results
The diameter of the zones of inhibition (DZI) of the extracts ranged from 7–13 mm on Escherichia coli and Staphylococcus aureus of which the methylene chloride:methanol [1:1] extract of Scleria striatinux recorded the highest activity (DZI = 13 mm). Twenty-nine pure compounds were screened and one, Okundoperoxide, isolated from S. striatinux, recorded a DZI ranging from 10–19 mm on S. aureus. The MICs and MBCs indicated that the Peperomias had broad-spectrum bacteriostatic activity. Toxicity tests showed that Okundoperoxide may have a low risk of toxicity with an LC50 of 46.88 μg/mL.
Conclusions
The antibacterial activity of these plants supports their use in traditional medicine. The pure compound, Okundoperoxide, may yield new antibacterial lead compounds following medicinal chemistry exploration.
doi:10.1186/1476-0711-11-10
PMCID: PMC3403929  PMID: 22549052
Resistance; Medicinal plants; Antibacterial compound; Toxicity
10.  Okundoperoxide, A Bicyclic Cyclofarnesylsesquiterpene Endoperoxide from Scleria striatinux with Antiplasmodial Activity 
Journal of natural products  2009;72(2):280-283.
Okundoperoxide (1) was isolated by bioassay-guided fractionation of extracts from Scleria striatinux (syn. S. striatonux) (Cyperaceae). The compound contains a cyclic endoperoxide structural moiety and possesses moderate antimalarial activity.
doi:10.1021/np800338p
PMCID: PMC2765531  PMID: 19199815

Results 1-10 (10)