Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Zou, exiling")
1.  Recent progress in drought and salt tolerance studies in Brassica crops 
Breeding Science  2014;64(1):60-73.
Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops.
PMCID: PMC4031111  PMID: 24987291
Brassica; drought; salinity; tolerance; genetic study
2.  A Comparison of Screening Methods to Identify Waterlogging Tolerance in the Field in Brassica napus L. during Plant Ontogeny 
PLoS ONE  2014;9(3):e89731.
Waterlogging tolerance is typically evaluated at a specific development stage, with an implicit assumption that differences in waterlogging tolerance expressed in these systems will result in improved yield performance in fields. It is necessary to examine these criteria in fields.
In the present study, three experiments were conducted to screen waterlogging tolerance in 25 rapeseed (Brassica napus L.) varieties at different developmental stages, such as seedling establishment stage and seedling stage at controlled environment, and maturity stage in the fields. The assessments for physiological parameters at three growth stages suggest that there were difference of waterlogging tolerance at all the development stages, providing an important basis for further development of breeding more tolerant materials. The results indicated that flash waterlogging restricts plant growth and growth is still restored after removal of the stress. Correlation analysis between waterlogging tolerance coefficient (WTC) of yield and other traits revealed that there was consistency in waterlogging tolerance of the genotypes until maturity, and good tolerance at seedling establishment stage and seedling stage can guarantee tolerance in later stages. The waterlogging-tolerant plants could be selected using some specific traits at any stage, and selections would be more effective at the seedling establishment stage.
Thus, our study provides a method for screening waterlogging tolerance, which would enable the suitable basis for initial selection of a large number of germplasm or breeding populations for waterlogging tolerance and help for verifying their potential utility in crop-improvement.
PMCID: PMC3940661  PMID: 24594687
3.  The Transcriptome of Brassica napus L. Roots under Waterlogging at the Seedling Stage 
Although rapeseed (Brassica napus L.) is known to be affected by waterlogging, the genetic basis of waterlogging tolerance by rapeseed is largely unknown. In this study, the transcriptome under 0 h and 12 h of waterlogging was assayed in the roots of ZS9, a tolerant variety, using digital gene expression (DGE). A total of 4432 differentially expressed genes were identified, indicating that the response to waterlogging in rapeseed is complicated. The assignments of the annotated genes based on GO (Gene Ontology) revealed there were more genes induced under waterlogging in “oxidation reduction”, “secondary metabolism”, “transcription regulation”, and “translation regulation”; suggesting these four pathways are enhanced under waterlogging. Analysis of the 200 most highly expressed genes illustrated that 144 under normal conditions were down-regulated by waterlogging, while up to 191 under waterlogging were those induced in response to stress. The expression of genes involved under waterlogging is mediated by multiple levels of transcriptional, post-transcriptional, translational and post-translational regulation, including phosphorylation and protein degradation; in particular, protein degradation might be involved in the negative regulation in response to this stress. Our results provide new insight into the response to waterlogging and will help to identify important candidate genes.
PMCID: PMC3588007  PMID: 23358252
rapeseed (Brassica napus L.); waterlogging; DGE (digital gene expression); roots; transcriptome
4.  Prolyl 4-hydroxylase genes are subjected to alternative splicing in roots of maize seedlings under waterlogging 
Annals of Botany  2011;108(7):1323-1335.
In animals, prolyl 4-hydroxylases (P4Hs) are regarded as oxygen sensors under hypoxia stress, but little is known about their role in the response to waterlogging in maize.
A comprehensive genome-wide analysis of P4H genes of maize (zmP4H genes) was carried out, including gene structures, phylogeny, protein motifs, chromosomal locations and expression patterns under waterlogging.
Key Results
Nine zmP4H genes were identified in maize, of which five were alternatively spliced into at least 19 transcripts. Different alternative splicing (AS) events were revealed in different inbred lines, even for the same gene, possibly because of organ and developmental specificities or different stresses. The signal strength of splice sites was strongly correlated with selection of donor and receptor sites, and ambiguous junction sites due to small direct repeats at the exon/intron junction frequently resulted in the selection of unconventional splicing sites. Eleven out of 14 transcripts resulting from AS harboured a premature termination codon, rendering them potential candidates for nonsense-mediated RNA degradation. Reverse transcription–PCR (RT–PCR) indicated that zmP4H genes displayed different expression patterns under waterlogging. The diverse transcripts generated from AS were expressed at different levels, suggesting that zmP4H genes were under specific control by post-transcriptional regulation under waterlogging stress in the line HZ32.
Our results provide a framework for future dissection of the function of the emerging zmP4H family and suggest that AS might have an important role in the regulation of the expression profile of this gene family under waterlogging stress.
PMCID: PMC3197451  PMID: 21969257
Maize; Zea mays; prolyl 4-hydroxylase; zmP4H; alternative splicing; AS; waterlogging; flooding stress
5.  Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging 
BMC Plant Biology  2010;10:189.
Plants respond to low oxygen stress, particularly that caused by waterlogging, by altering transcription and translation. Previous studies have mostly focused on revealing the mechanism of the response at the early stage, and there is limited information about the transcriptional profile of genes in maize roots at the late stage of waterlogging. The genetic basis of waterlogging tolerance is largely unknown. In this study, the transcriptome at the late stage of waterlogging was assayed in root cells of the tolerant inbred line HZ32, using suppression subtractive hybridization (SSH). A forward SSH library using RNA populations from four time points (12 h, 16 h, 20 h and 24 h) after waterlogging treatment was constructed to reveal up-regulated genes, and transcriptional and linkage data was integrated to identify candidate genes for waterlogging tolerance.
Reverse Northern analysis of a set of 768 cDNA clones from the SSH library revealed a large number of genes were up-regulated by waterlogging. A total of 465 ESTs were assembled into 296 unigenes. Bioinformatic analysis revealed that the genes were involved in complex pathways, such as signal transduction, protein degradation, ion transport, carbon and amino acid metabolism, and transcriptional and translational regulation, and might play important roles at the late stage of the response to waterlogging. A significant number of unigenes were of unknown function. Approximately 67% of the unigenes could be aligned on the maize genome and 63 of them were co-located within reported QTLs.
The late response to waterlogging in maize roots involves a broad spectrum of genes, which are mainly associated with two response processes: defense at the early stage and adaption at the late stage. Signal transduction plays a key role in activating genes related to the tolerance mechanism for survival during prolonged waterlogging. The crosstalk between carbon and amino acid metabolism reveals that amino acid metabolism performs two main roles at the late stage: the regulation of cytoplasmic pH and energy supply through breakdown of the carbon skeleton.
PMCID: PMC2956539  PMID: 20738849

Results 1-5 (5)