PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Zhang, bangui")
1.  Correlation between dynamic tomato fruit-set and source–sink ratio: a common relationship for different plant densities and seasons? 
Annals of Botany  2010;107(5):805-815.
Background and Aims
It is widely accepted that fruit-set in plants is related to source–sink ratio. Despite its critical importance to yield, prediction of fruit-set remains an ongoing problem in crop models. Functional–structural plant models are potentially able to simulate organ-level plasticity of plants. To predict fruit-set, the quantitative link between source–sink ratio and fruit-set probability is analysed here via a functional–structural plant model, GreenLab.
Methods
Two experiments, each with four plant densities, were carried out in a solar greenhouse during two growth seasons (started in spring and autumn). Dynamic fruit-set probability was estimated by frequent observation on inflorescences. Source and sink parameter values were obtained by fitting GreenLab outputs for the biomass of plant parts (lamina, petiole, internode, fruit), at both organ and plant level, to corresponding destructive measurements at six dates from real plants. The dynamic source–sink ratio was calculated as the ratio between biomass production and plant demand (sum of all organ sink strength) per growth cycle, both being outputs of the model.
Key Results and Conclusions
Most sink parameters were stable over multiple planting densities and seasons. From planting, source–sink ratio increased in the vegetative stage and reached a peak after fruit-set commenced, followed by a decrease of leaf appearance rate. Fruit-set probability was correlated with the source–sink ratio after the appearance of flower buds. The relationship between fruit-set probability and the most correlated source–sink ratio could be quantified by a single regression line for both experiments. The current work paves the way to predicting dynamic fruit-set using a functional structure model.
doi:10.1093/aob/mcq244
PMCID: PMC3077983  PMID: 21183453
Tomato; Solanum lycopersicum; fruit-set probability; time step; source–sink ratio; sink strength; functional–structural plant model; inverse modelling; plant plasticity
2.  CEACAM6 Promotes Gastric Cancer Invasion and Metastasis by Inducing Epithelial-Mesenchymal Transition via PI3K/AKT Signaling Pathway 
PLoS ONE  2014;9(11):e112908.
Overexpressed CEACAM6 in tumor tissues plays important roles in invasion, metastasis and anoikis resistance in a variety of human cancers. We recently reported that CEACAM6 expression is upregulated in Gastric cancer (GC) tissues and promoted GC metastasis. Here, we report that CEACAM6 promotes peritoneal metastases in vivo and is negatively correlated with E-cadherin expression in GC tissues. Overexpressed CEACAM6 induced epithelial-mesenchymal transition (EMT) in GC, as measured by increases in the EMT markers N-cadherin, Vimentin and Slug while E-cadherin expression was decreased in CEACAM6-overexpressing GC cells; opposing results were observed in CEACAM6-silenced cells. Furthermore, E-cadherin expression was negatively correlated with depth of tumor invasion, lymph node metastasis and TNM stage in GC tissues. Additionally, CEACAM6 elevated matrix metalloproteinase-9 (MMP-9) activity in GC, and anti-MMP-9 antibody could reverse the increasing invasion and migration induced by CEACAM6. CEACAM6 also increased the levels of phosphorylated AKT, which is involved in the progression of a variety of human tumors. We further observed that LY294002, a PI3K inhibitor, could reverse CEACAM6-induced EMT via mesenchymal-epithelial transition. These findings suggest that CEACAM6 enhances invasion and metastasis in GC by promoting EMT via the PI3K/AKT signaling pathway.
doi:10.1371/journal.pone.0112908
PMCID: PMC4232574  PMID: 25398131

Results 1-2 (2)