Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4 
Taxus cell suspension culture is a sustainable technology for the industrial production of paclitaxel (Taxol®), a highly modified diterpene anti-cancer agent. The methyl jasmonate (MJ)-mediated paclitaxel biosynthetic pathway is not fully characterized, making metabolic engineering efforts difficult. Here, promoters of seven genes (TASY, T5αH, DBAT, DBBT, PAM, BAPT, and DBTNBT), encoding enzymes of the paclitaxel biosynthetic pathway were isolated and used to drive MJ-inducible expression of a GUS reporter construct in transiently transformed Taxus cells, showing that elicitation of paclitaxel production by MJ is regulated at least in part at the level of transcription. The paclitaxel biosynthetic pathway promoters contained a large number of E-box sites (CANNTG), similar to the binding sites for the key MJ-inducible transcription factor AtMYC2 from Arabidopsis thaliana. Three MJ-inducible MYC transcription factors similar to AtMYC2 (TcJAMYC1, TcJAMYC2, and TcJAMYC4) were identified in Taxus. Transcriptional regulation of paclitaxel biosynthetic pathway promoters by transient over expression of TcJAMYC transcription factors indicated a negative rather than positive regulatory role of TcJAMYCs on paclitaxel biosynthetic gene expression.
PMCID: PMC4341510  PMID: 25767476
Taxus cuspidata; paclitaxel; methyl jasmonate; E-box; JA-MYC; MYC2
2.  Contribution of taxane biosynthetic pathway gene expression to observed variability in paclitaxel accumulation in Taxus suspension cultures 
Biotechnology journal  2012;7(3):418-427.
Variability in product accumulation is one of the major obstacles limiting the widespread commercialization of plant cell culture technology to supply natural product pharmaceuticals. Despite extensive process engineering efforts, which have led to increased yields, plant cells exhibit variability in productivity that is poorly understood. Elicitation of Taxus cultures with methyl jasmonate (MeJA) induces paclitaxel accumulation, but to varying extents in different cultures. In this work, cultures with different aggregation profiles were established to create predictable differences in paclitaxel accumulation upon MeJA elicitation. Expression of known paclitaxel biosynthetic genes in MeJA-elicited cultures exhibiting both substantial (15-fold) and moderate (2-fold) differences in paclitaxel accumulation was analyzed using qRT-PCR. Each population exhibited the characteristic large increase in paclitaxel pathway gene expression following MeJA elicitation; however, differences in expression between populations were minor, and only observed for the cultures with the 15-fold variation in paclitaxel content. These data suggest that although upregulation of biosynthetic pathway gene expression contributes to observed increases in paclitaxel synthesis upon elicitation with MeJA, there are additional factors that need to be uncovered before paclitaxel productivity can be fully optimized.
PMCID: PMC3505991  PMID: 22095859
plant biotechnology; gene expression; paclitaxel; Taxus; production variability
3.  Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters 
Annals of Botany  2011;108(5):821-833.
Background and Aims
Brachypodium distachyon is a temperate grass with a small stature, rapid life cycle and completely sequenced genome that has great promise as a model system to study grass-specific traits for crop improvement. Under iron (Fe)-deficient conditions, grasses synthesize and secrete Fe(III)-chelating agents called phytosiderophores (PS). In Zea mays, Yellow Stripe1 (ZmYS1) is the transporter responsible for the uptake of Fe(III)–PS complexes from the soil. Some members of the family of related proteins called Yellow Stripe-Like (YSL) have roles in internal Fe translocation of plants, while the function of other members remains uninvestigated. The aim of this study is to establish brachypodium as a model system to study Fe homeostasis in grasses, identify YSL proteins in brachypodium and maize, and analyse their expression profiles in brachypodium in response to Fe deficiency.
The YSL family of proteins in brachypodium and maize were identified based on sequence similarity to ZmYS1. Expression patterns of the brachypodium YSL genes (BdYSL genes) were determined by quantitative RT–PCR under Fe-deficient and Fe-sufficient conditions. The types of PS secreted, and secretion pattern of PS in brachypodium were analysed by high-performance liquid chromatography.
Key Results
Eighteen YSL family members in maize and 19 members in brachypodium were identified. Phylogenetic analysis revealed that some YSLs group into a grass-specific clade. The Fe status of the plant can regulate expression of brachypodium YSL genes in both shoots and roots. 3-Hydroxy-2′-deoxymugineic acid (HDMA) is the dominant type of PS secreted by brachypodium, and its secretion is diurnally regulated.
PS secretion by brachypodium parallels that of related crop species such as barley and wheat. A single grass species-specific YSL clade is present, and expression of the BdYSL members of this clade could not be detected in shoots or roots, suggesting grass-specific functions in reproductive tissues. Finally, the Fe-responsive expression profiles of several YSLs suggest roles in Fe homeostasis.
PMCID: PMC3177677  PMID: 21831857
Brachypodium distachyon; Zea mays; iron homeostasis; phytosiderophore; nicotianamine; Yellow Stripe-Like; YSL; YS1
4.  Identification and expression analysis of methyl jasmonate responsive ESTs in paclitaxel producing Taxus cuspidata suspension culture cells 
BMC Genomics  2012;13:148.
Taxol® (paclitaxel) promotes microtubule assembly and stabilization and therefore is a potent chemotherapeutic agent against wide range of cancers. Methyl jasmonate (MJ) elicited Taxus cell cultures provide a sustainable option to meet the growing market demand for paclitaxel. Despite its increasing pharmaceutical importance, the molecular genetics of paclitaxel biosynthesis is not fully elucidated. This study focuses on identification of MJ responsive transcripts in cultured Taxus cells using PCR-based suppression subtractive hybridization (SSH) to identify genes involved in global pathway control.
Six separate SSH cDNA libraries of paclitaxel-accumulating Taxus cuspidata P991 cell lines were constructed at three different post-elicitation time points (6h, 18h and 5 day) to identify genes that are either induced or suppressed in response to MJ. Sequencing of 576 differentially screened clones from the SSH libraries resulted in 331 unigenes. Functional annotation and Gene Ontology (GO) analysis of up-regulated EST libraries showed enrichment of several known paclitaxel biosynthetic genes and novel transcripts that may be involved in MJ-signaling, taxane transport, or taxane degradation. Macroarray analysis of these identified genes unravelled global regulatory expression of these transcripts. Semi-quantitative RT-PCR analysis of a set of 12 candidate genes further confirmed the MJ-induced gene expression in a high paclitaxel accumulating Taxus cuspidata P93AF cell line.
This study elucidates the global temporal expression kinetics of MJ responsive genes in Taxus suspension cell culture. Functional characterization of the novel genes identified in this study will further enhance the understanding of paclitaxel biosynthesis, taxane transport and degradation.
PMCID: PMC3489508  PMID: 22530557

Results 1-4 (4)