Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Comparative anatomy of floral elaiophores in Vitekorchis Romowicz & Szlach., Cyrtochilum Kunth and a florally dimorphic species of Oncidium Sw. (Orchidaceae: Oncidiinae) 
Annals of Botany  2014;113(7):1155-1173.
Background and Aims
Recently, molecular approaches have been used to investigate the phylogeny of subtribe Oncidiinae, resulting in the re-alignment of several of its genera. Here, a description is given of the structure of the floral elaiophores (oil glands) of four species formerly assigned to Oncidium Sw. Those of Vitekorchis excavata (Lindl.) Romowicz & Szlach., Cyrtochilum meirax (Rchb.f.) Dalström and a species of Oncidium displaying floral dimorphism, namely O. heteranthum Poepp. & Endl. var. album, are compared with that of Gomesa longipes (Lindl.) M.W. Chase & N.H. Williams, whose epithelial elaiophores are typical of many Oncidiinae, in order to extend our understanding of elaiophore diversity within this subtribe.
Floral elaiophore structure was examined and compared at anthesis for all four species using light microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry.
Key Results
In all species investigated, with the exception of C. meirax, the floral elaiophore occurs on the labellar callus and is of the intermediate type, possessing both glabrous and trichomatous regions. By contrast, although all four species produce lipid secretions, C. meirax lacks an obvious elaiophore. In each case, the secretory tissue is represented by a single-layered epidermis of cuboidal cells (trichomatous and/or atrichomatous). Palisade cells are absent. The secretion may be wax- or oil-like and is usually produced by smooth endoplasmic reticulum (SER). However, in C. meirax, where rough endoplasmic reticulum (RER) predominates, oil accumulates as plastoglobuli within elaioplasts. These plastoglobuli are then discharged into the cytoplasm, forming oil bodies. In some species, oil usually accumulates within vesicles at the plasmalemma or in the periplasmic space before traversing the cell wall and accumulating beneath the cuticle, sometimes with distension of the latter. Gomesa longipes is unusual in its production of a heterogeneous secretion, whereas Vitekorchis excavata is equally remarkable for the protuberances found on the walls of its secretory cells.
Anatomically, the secretory tissues of all four species, despite currently being assigned to four different genera, are remarkably similar and indicative of homoplasy. This supports previous investigations of the floral elaiophore in Oncidiinae, which showed that the same elaiophore characters may be shared by different clades, but not always by species of the same genus. Consequently, elaiophores are considered to be of limited value in investigating the phylogeny of this subtribe. Furthermore, floral dimorphism does not greatly modify elaiophore structure in the fertile flowers of Oncidium heteranthum var. album. Based on the presence or absence of well-defined elaiophores, the nature of the secretion and the cell ultrastructure, it is likely that floral oil may be produced in Oncidiinae in one of two ways: by the ER (mainly SER) or by plastids, most notably elaioplasts. Once the oil is discharged into the cytoplasm as oil bodies or oil droplets, there is little difference between the subsequent stages of oil secretion; the oil traversing the cytoplasm (often vesicle-mediated) and cell wall before accumulating beneath the cuticle.
PMCID: PMC4030811  PMID: 24737719
Anatomy; floral elaiophore; lipids; micromorphology; oil glands; Oncidiinae; ultrastructure; Vitekorchis; Cyrtochilum; Oncidium; Gomesa; Orchidaceae
2.  Comparative anatomy of the floral elaiophore in representatives of the newly re-circumscribed Gomesa and Oncidium clades (Orchidaceae: Oncidiinae) 
Annals of Botany  2013;112(5):839-854.
Background and Aims
Recently, molecular approaches have been used to investigate the phylogeny of Oncidiinae. This has resulted in the transfer of taxa previously considered to be species of Oncidium Sw. into Gomesa R. Br. and the re-circumscription of both genera. In this study, the structure of the floral elaiophore (oil gland) is described and compared for Gomesa echinata (Barb. Rodr.) M.W. Chase & N.H. Williams, G. ranifera (Lindl.) M.W. Chase & N.H. Williams, Oncidium amazonicum (Schltr.) M.W. Chase & N.H. Williams and O. oxyceras (Königer & J.G. Weinm.) M.W. Chase & N.H. Williams in order to determine whether phylogenetic revision is supported by differences in its anatomy.
The floral elaiophore structure was examined and compared at three developmental stages (closed bud, first day of anthesis and final stage of anthesis) for all four species using light microscopy, fluorescence microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry.
Key results
In all species investigated, the floral elaiophore occurs on the labellar callus and is of the epithelial type, comprising cuboidal to palisade-like, secretory epidermal cells and a layer of sub-epidermal cells, both tissues enclosing ground parenchyma supplied with collateral vascular bundles and containing idioblasts, often with raphides or phenolic contents. A bi-layered cuticle comprising an outer, lamellate and an inner, reticulate layer is present, and sub-cuticular accumulation of secreted material results in distension of the cuticle. Secretion-filled cavities are present at anthesis in the elaiophore cell walls and, in most species, the outer, tangential walls of the elaiophore have small, peg-like projections that protrude into the cytoplasm. In all taxa examined, the elaiophore organelle complement, especially the smooth endoplasmic reticulum (SER), is typical of lipid-secreting cells.
In terms of location, morphology, anatomy and ultrastructure, the floral elaiophores of both Gomesa and Oncidium species examined are very similar, and distinction between these genera is not possible based on elaiophore features alone. Furthermore, many of these elaiophore characters are shared with representatives of other clades of Oncidiinae, including the Ornithocephalus clade. Consequently, elaiophores are considered homoplasious and of limited value in investigating the phylogeny of this subtribe.
PMCID: PMC3747802  PMID: 23884394
Anatomy; elaiophore; lipid secretion; micromorphology; oil glands; Oncidiinae; ultrastructure
3.  Floral elaiophore structure in four representatives of the Ornithocephalus clade (Orchidaceae: Oncidiinae) 
Annals of Botany  2012;110(4):809-820.
Background and Aims
A significant number of species assigned to the Neotropical orchid sub-tribe Oncidiinae reward insect pollinators with oil produced in floral glands termed elaiophores. The latter may be glabrous (epithelial elaiophores) or hirsute (trichomal elaiophores). Although the detailed anatomy and ultrastructure of epithelial elaiophores have been studied for a number of genera, such as Oncidium Sw., Gomesa R. Br. and Trichocentrum Poepp. & Endl., hitherto, trichomal elaiophores have been investigated only for a single species of Oncidiinae, Ornithocephalus ciliatus Lindl. Furthermore, this is the only representative of the Ornithocephalus clade to be investigated to date. Here, an examination is made of the elaiophore anatomy and ultrastructure of a further four species currently assigned to this clade (Ornithocephalus gladiatus Hook., Phymatidium falcifolium Lindl., Zygostates grandiflora (Lindl.) Mansf. and Zygostates lunata Lindl.) and the results compared with those obtained for other Oncidiinae.
Elaiophore structure was examined for all species at three stages of flower development: closed bud, first day of anthesis and final stage of anthesis, using light microscopy, fluorescence microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry.
Key Results
Elaiophores of O. gladiatus occur upon the lateral lobes of the labellum and display characters intermediate between those of typical epithelial and trichomal elaiophores, in that they are largely glabrous, consisting mainly of cuboidal epidermal cells, but bear short, unicellular hairs proximally. By contrast, the elaiophores of all the other species investigated occur on the callus and are of the trichomal type. In P. falcifolium, these unicellular hairs are capitate. In all species, oil secretion commenced at the closed floral bud stage. Ultrastructurally, the mainly trichomal elaiophores of the four representatives of the Ornithocephalus clade closely resembled the epithelial elaiophores of other Oncidiinae, in that their cells displayed an organelle complement typical of lipid-secreting cells. However, in some taxa, a number of noteworthy characters were present. For example, the elaiophore cuticle of O. gladiatus and P. falcifolium was bi-layered, the outer layer being lamellate, the inner reticulate. The cuticle of Z. grandiflora and Z. lunata was also lamellate, but here, a reticulate layer was absent. Accumulation of secreted oil resulted in the localized distension of the cuticle. Cuticular cracks and pores, however, were absent from all species. The walls of the secretory cells of Z. grandiflora were also atypical in that they had short protuberances or ingrowths, and contained cavities which are thought to be involved in the secretory process.
Of the species investigated, most displayed similar anatomical organization, their trichomal elaiophores occurring on the labellar callus. They, thus, differ from many other members of the Oncidiinae, where epithelial elaiophores are found either on the callus, or on the lateral lobes of the labellum. However, ultrastructurally, all elaiophores, whether those of representatives of the Ornithocephalus clade, or those of other oil-secreting Oncidiinae, possessed a similar complement of organelles, regardless of whether the elaiophores were trichomal or epithelial. In view of the latter, and the similar chemical composition of oils derived from all Oncidiinae investigated to date, it is probable that position and type of elaiophore, and possibly the structure of the overlying cuticle, play an important role in pollinator selection in these oil-secreting orchids.
PMCID: PMC3423815  PMID: 22805528
Anatomy; elaiophore; histochemistry; lipid secretion; micromorphology; oil glands; Oncidiinae; trichome; ultrastructure
4.  Comparative anatomy of the nectary spur in selected species of Aeridinae (Orchidaceae) 
Annals of Botany  2010;107(3):327-345.
Background and Aims
To date, the structure of the nectary spur of Aeridinae has not been studied in detail, and data relating to the nectaries of ornithophilous orchids remain scarce. The present paper compares the structural organization of the floral nectary in a range of Aeridinae species, including both entomophilous and ornithophilous taxa.
Nectary spurs of Ascocentrum ampullaceum (Roxb.) Schltr. var. aurantiacum Pradhan, A. curvifolium (Lindl.) Schltr., A. garayi Christenson, Papilionanthe vandarum (Rchb.f.) Garay, Schoenorchis gemmata (Lindl.) J.J. Sm., Sedirea japonica (Rchb.f.) Garay & H.R. Sweet and Stereochilus dalatensis (Guillaumin) Garay were examined by means of light microscopy, scanning electron microscopy and transmission electron microscopy.
Key Results and Conclusions
The diverse anatomy of the nectary is described for a range of Aeridinae species. All species of Ascocentrum investigated displayed features characteristic of ornithophilous taxa. They have weakly zygomorphic, scentless, red or orange flowers, display diurnal anthesis, possess cryptic anther caps and produce nectar that is secluded in a relatively massive nectary spur. Unicellular, secretory hairs line the lumen at the middle part of the spur. Generally, however, with the exception of Papilionanthe vandarum, the nectary spurs of all entomophilous species studied here (Schoenorchis gemmata, Sedirea japonica, Stereochilus dalatensis) lack secretory trichomes. Moreover, collenchymatous secretory tissue, present only in the nectary spur of Asiatic Ascocentrum species, closely resembles that found in nectaries of certain Neotropical species that are hummingbird-pollinated and assigned to subtribes Maxillariinae Benth., Laeliinae Benth. and Oncidiinae Benth. This similarity in anatomical organization of the nectary, regardless of geographical distribution and phylogeny, indicates convergence.
PMCID: PMC3043926  PMID: 21183455
Aeridinae; collenchyma; entomophily; floral anatomy; micromorphology; nectar; nectary spur; Orchidaceae; ornithophily; trichomes
5.  Floral Longevity and Nectar Secretion of Platanthera chlorantha (Custer) Rchb. (Orchidaceae) 
Annals of Botany  2003;92(2):191-197.
Flowering and nectar secretion were studied in Platanthera chlorantha in two years. Nectar was secreted and accumulated in this orchid’s spur, originating from part of the labellum. The nectary spur was, on average, 32 mm long. It produced 6·86 µl nectar in 1999 and 7·84 µl in 2000. The number of flowers per inflorescence and the volume of nectar secreted per flower were not correlated. Nectar secretion and flower longevity differed depending on pollination and flower position in the inflorescence. Among pairs of pollinated and unpollinated flowers there was no difference in the volume of nectar produced; however, the life span of pollinated flowers was shorter than that of unpollinated ones. Within an inflorescence, the lowest‐positioned flowers had the largest nectar production and the longest life compared with flowers positioned higher up.
PMCID: PMC4243647  PMID: 12805083
Orchidaceae; Platanthera chlorantha; flower longevity; nectar secretion; nectary spur; pollination

Results 1-5 (5)