PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide 
Annals of Botany  2011;108(5):933-944.
Background and Aims
Karrikinolide (KAR1) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR1 is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR1, and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR1 may be present in physiologically dormant seeds but may not be expressed under all circumstances.
Methods
Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR1 when freshly collected and following simulated and natural dormancy alleviation, which included wet–dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial.
Key Results
Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR1 when the seeds were fresh, and the remaining species became responsive to KAR1 following wet–dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR1, with the majority of species germinating better in darkness. Germination with and without KAR1 fluctuated seasonally throughout the seed burial trial.
Conclusions
KAR1 responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR1, and a response to KAR1 can be induced. Three response types for generalizing KAR1 responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR1 were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae may be an ideal target for future application of KAR1 in weed management.
doi:10.1093/aob/mcr198
PMCID: PMC3177676  PMID: 21821831
Brassicaceae; butenolide; germination; karrikinolide; karrikins; KAR1; physiological dormancy; seed dormancy; weeds
2.  Prior hydration of Brassica tournefortii seeds reduces the stimulatory effect of karrikinolide on germination and increases seed sensitivity to abscisic acid 
Annals of Botany  2010;105(6):1063-1070.
Background and Aims
The smoke-derived compound karrikinolide (KAR1) shows significant potential as a trigger for the synchronous germination of seeds in a variety of plant-management contexts, from weed seeds in paddocks, to native seeds when restoring degraded lands. Understanding how KAR1 interacts with seed physiology is a necessary precursor to the development of the compound as an efficient and effective management tool. This study tested the ability of KAR1 to stimulate germination of seeds of the global agronomic weed Brassica tournefortii, at different hydration states, to gain insight into how the timing of KAR1 applications in the field should be managed relative to rain events.
Methods
Seeds of B. tournefortii were brought to five different hydration states [equilibrated at 15 % relative humidity (RH), 47 % RH, 96 % RH, fully imbibed, or re-dried to 15 % RH following maximum imbibition] then exposed to 1 nm or 1 µm KAR1 for one of five durations (3 min, 1 h, 24 h, 14 d or no exposure).
Key Results
Dry seeds with no history of imbibition were the most sensitive to KAR1; sensitivity was lower in seeds that were fully imbibed or fully imbibed then re-dried. In addition, reduced sensitivity to KAR1 was associated with an increased sensitivity to exogenously applied abscisic acid (ABA).
Conclusions
Seed water content and history of imbibition were found to significantly influence whether seeds germinate in response to KAR1. To optimize the germination response of seeds, KAR1 should be applied to dry seeds, when sensitivity to ABA is minimized.
doi:10.1093/aob/mcq061
PMCID: PMC2876004  PMID: 20348089
Karrikinolide; karrikins; butenolide; smoke; germination stimulant; seed water content; abscisic acid; ABA; gibberellin; weed; Brassica tournefortii

Results 1-2 (2)