PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  The Root Herbivore History of the Soil Affects the Productivity of a Grassland Plant Community and Determines Plant Response to New Root Herbivore Attack 
PLoS ONE  2013;8(2):e56524.
Insect root herbivores can alter plant community structure by affecting the competitive ability of single plants. However, their effects can be modified by the soil environment. Root herbivory itself may induce changes in the soil biota community, and it has recently been shown that these changes can affect plant growth in a subsequent season or plant generation. However, so far it is not known whether these root herbivore history effects (i) are detectable at the plant community level and/or (ii) also determine plant species and plant community responses to new root herbivore attack. The present greenhouse study determined root herbivore history effects of click beetle larvae (Elateridae, Coleoptera, genus Agriotes) in a model grassland plant community consisting of six common species (Achillea millefolium, Plantago lanceolata, Taraxacum officinale, Holcus lanatus, Poa pratensis, Trifolium repens). Root herbivore history effects were generated in a first phase of the experiment by growing the plant community in soil with or without Agriotes larvae, and investigated in a second phase by growing it again in the soils that were either Agriotes trained or not. The root herbivore history of the soil affected plant community productivity (but not composition), with communities growing in root herbivore trained soil producing more biomass than those growing in untrained soil. Additionally, it influenced the response of certain plant species to new root herbivore attack. Effects may partly be explained by herbivore-induced shifts in the community of arbuscular mycorrhizal fungi. The root herbivore history of the soil proved to be a stronger driver of plant growth on the community level than an actual root herbivore attack which did not affect plant community parameters. History effects have to be taken into account when predicting the impact of root herbivores on grasslands.
doi:10.1371/journal.pone.0056524
PMCID: PMC3575479  PMID: 23441201
2.  Interactive effects of plant-available soil silicon and herbivory on competition between two grass species 
Annals of Botany  2011;108(7):1355-1363.
Background and Aims
The herbivore defence system of true grasses (Poaceae) is predominantly based on silicon that is taken up from the soil and deposited in the leaves in the form of abrasive phytoliths. Silicon uptake mechanisms can be both passive and active, with the latter suggesting that there is an energetic cost to silicon uptake. This study assessed the effects of plant-available soil silicon and herbivory on the competitive interactions between the grasses Poa annua, a species that has previously been reported to accumulate only small amounts of silicon, and Lolium perenne, a high silicon accumulator.
Methods
Plants were grown in mono- and mixed cultures under greenhouse conditions. Plant-available soil silicon levels were manipulated by adding silicon to the soil in the form of sodium silicate. Subsets of mixed culture pots were exposed to above-ground herbivory by desert locusts (Schistocerca gregaria).
Key Results
In the absence of herbivory, silicon addition increased biomass of P. annua but decreased biomass of L. perenne. Silicon addition increased foliar silicon concentrations of both grass species >4-fold. Under low soil-silicon availability the herbivores removed more leaf biomass from L. perenne than from P. annua, whereas under high silicon availability the reverse was true. Consequently, herbivory shifted the competitive balance between the two grass species, with the outcome depending on the availability of soil silicon.
Conclusions
It is concluded that a complex interplay between herbivore abundance, growth–defence trade-offs and the availability of soil silicon in the grasses' local environment affects the outcome of inter-specific competition, and so has the potential to impact on plant community structure.
doi:10.1093/aob/mcr230
PMCID: PMC3197457  PMID: 21868406
Above-ground herbivory; Lolium perenne; physical anti-herbivore defence; Poa annua; Schistocerca gregaria; growth–defence trade-off

Results 1-2 (2)