PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Characterization of the interactions between architecture and source–sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model 
Annals of Botany  2010;107(5):765-779.
Background and Aims
This study aimed to characterize the interaction between architecture and source–sink relationships in winter oilseed rape (WOSR): do the costs of ramification compromise the source–sink ratio during seed filling? The GreenLab model is a good candidate to address this question because it has been already used to describe interactions between source–sink relationships and architecture for other species. However, its adaptation to WOSR is a challenge because of the complexity of its developmental scheme, especially during the reproductive phase.
Methods
Equations were added in GreenLab to compute expansion delays for ramification, flowering of each axis and photosynthesis of pods including the energetic cost of oil synthesis. Experimental field data were used to estimate morphological parameters while source–sink parameters of the model were estimated by adjustment of model outputs to the data. Ecophysiological outputs were used to assess the sources/sink relationships during the whole growth cycle.
Key Results
First results indicated that, at the plant scale, the model correctly simulates the dynamics of organ growth. However, at the organ scale, errors were observed that could be explained either by secondary growth that was not incorporated or by uncertainties in morphological parameters (durations of expansion and life). Ecophysiological outputs highlighted the dramatic negative impact of ramification on the source–sink ratio, as well as the decrease in this ratio during seed filling despite pod envelope photosynthesis that allowed significant biomass production to be maintained.
Conclusions
This work is a promising first step in the construction of a structure–function model for a plant as complex as WOSR. Once tested for other environments and/or genotypes, the model can be used for studies on WOSR architectural plasticity.
doi:10.1093/aob/mcq205
PMCID: PMC3077979  PMID: 20980324
Biological system modelling; source–sink relationships; ramification; GreenLab model; energetic cost; oleaginous seeds; Brassica napus; winter oilseed rape
2.  Computing Competition for Light in the GREENLAB Model of Plant Growth: A Contribution to the Study of the Effects of Density on Resource Acquisition and Architectural Development 
Annals of Botany  2007;101(8):1207-1219.
Background and Aims
The dynamical system of plant growth GREENLAB was originally developed for individual plants, without explicitly taking into account interplant competition for light. Inspired by the competition models developed in the context of forest science for mono-specific stands, we propose to adapt the method of crown projection onto the x–y plane to GREENLAB, in order to study the effects of density on resource acquisition and on architectural development.
Methods
The empirical production equation of GREENLAB is extrapolated to stands by computing the exposed photosynthetic foliage area of each plant. The computation is based on the combination of Poisson models of leaf distribution for all the neighbouring plants whose crown projection surfaces overlap. To study the effects of density on architectural development, we link the proposed competition model to the model of interaction between functional growth and structural development introduced by Mathieu (2006, PhD Thesis, Ecole Centrale de Paris, France).
Key Results and Conclusions
The model is applied to mono-specific field crops and forest stands. For high-density crops at full cover, the model is shown to be equivalent to the classical equation of field crop production ( Howell and Musick, 1985, in Les besoins en eau des cultures; Paris: INRA Editions). However, our method is more accurate at the early stages of growth (before cover) or in the case of intermediate densities. It may potentially account for local effects, such as uneven spacing, variation in the time of plant emergence or variation in seed biomass. The application of the model to trees illustrates the expression of plant plasticity in response to competition for light. Density strongly impacts on tree architectural development through interactions with the source–sink balances during growth. The effects of density on tree height and radial growth that are commonly observed in real stands appear as emerging properties of the model.
doi:10.1093/aob/mcm272
PMCID: PMC2710279  PMID: 18037666
Functional–structural plant models; GREENLAB; competition for light; Beer–Lambert Law; plant plasticity; dynamical system
3.  Rhythms and Alternating Patterns in Plants as Emergent Properties of a Model of Interaction between Development and Functioning 
Annals of Botany  2007;101(8):1233-1242.
Background and Aims
To model plasticity of plants in their environment, a new version of the functional–structural model GREENLAB has been developed with full interactions between architecture and functioning. Emergent properties of this model were revealed by simulations, in particular the automatic generation of rhythms in plant development. Such behaviour can be observed in natural phenomena such as the appearance of fruit (cucumber or capsicum plants, for example) or branch formation in trees.
Methods
In the model, a single variable, the source–sink ratio controls different events in plant architecture. In particular, the number of fruits and branch formation are determined as increasing functions of this ratio. For some sets of well-chosen parameters of the model, the dynamical evolution of the ratio during plant growth generates rhythms.
Key Results and Conclusions
Cyclic patterns in branch formation or fruit appearance emerge without being forced by the model. The model is based on the theory of discrete dynamical systems. The mathematical formalism helps us to explain rhythm generation and to control the behaviour of the system. Rhythms can appear during both the exponential and stabilized phases of growth, but the causes are different as shown by an analytical study of the system. Simulated plant behaviours are very close to those observed on real plants. With a small number of parameters, the model gives very interesting results from a qualitative point of view. It will soon be subjected to experimental data to estimate the model parameters.
doi:10.1093/aob/mcm171
PMCID: PMC2710268  PMID: 17715304
Rhythms; plasticity; plant growth model; GREENLAB; interactions; branching system; fructification; emergent properties

Results 1-3 (3)