Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Isolation and characterization of 11 microsatellite markers for Glochidion acuminatum (Phyllanthaceae)1 
Applications in Plant Sciences  2014;2(9):apps.1400045.
• Premise of the study: Microsatellite markers were developed for Glochidion acuminatum (Phyllanthaceae) to investigate pollen dispersal distances and thereby to assess the effectiveness of specialized Epicephala moths as pollinators.
• Methods and Results: Using next-generation sequencing, 11 polymorphic microsatellite primer pairs were developed for G. acuminatum. The primer pairs were tested on 49 individuals from two populations in Japan. The number of alleles per locus ranged from two to 13, and the expected heterozygosity ranged from 0.12 to 0.85. Probability of identity for all loci combined was lower than 1.27 × 107.
• Conclusions: The microsatellite markers developed in this study will be useful for evaluating the benefit of specialized Epicephala moth pollination to Glochidion plants.
PMCID: PMC4162668  PMID: 25225630
active pollination; Epicephala; Glochidion acuminatum; obligate pollination mutualism; Phyllantheae; pollen dispersal distance
2.  Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris 
Annals of Botany  2011;108(7):1299-1306.
Background and Aims
For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris.
Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology.
Key Results
Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface.
R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.
PMCID: PMC3197461  PMID: 21896573
Amphibious plant; blue-light intensity; heterophylly; leaf morphogenesis; light quality; red/far-red ratio; Rotala hippuris; stomata density; underwater light distribution
3.  Development of Nine Markers and Characterization of the Microsatellite Loci in the Endangered Gymnogobius isaza (Gobiidae) 
Gymnogobius isaza is a freshwater goby endemic to Lake Biwa, Japan. They experienced a drastic demographic bottleneck in the 1950s and 1980s and slightly recovered thereafter, but the population size is still very small. To reveal dynamics of genetic diversity of G. isaza, we developed nine microsatellite markers based on the sequence data of a related goby Chaenogobius annularis. Nine SSR (Simple Sequence Repeats) markers were successfully amplified for raw and formalin-fixed fish samples. The number of alleles and expected heterozygosities ranged from one to 10 and from 0.06 to 0.84, respectively, for the current samples, while one to 12 and 0.09 to 0.83 for historical samples. The markers described here will be useful for investigating the genetic diversity and gene flow and for conservation of G. isaza.
PMCID: PMC3382742  PMID: 22754324
bottleneck; formalin-fixed samples; Gymnogobius isaza; Lake Biwa; microsatellite
4.  Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology 
Annals of Botany  2011;108(4):777-787.
It is essential to understand and predict the effects of changing environments on plants. This review focuses on the sexual reproduction of plants, as previous studies have suggested that this trait is particularly vulnerable to climate change, and because a number of ecologically and evolutionarily relevant genes have been identified.
It is proposed that studying gene functions in naturally fluctuating conditions, or gene functions in natura, is important to predict responses to changing environments. First, we discuss flowering time, an extensively studied example of phenotypic plasticity. The quantitative approaches of ecological and evolutionary systems biology have been used to analyse the expression of a key flowering gene, FLC, of Arabidopsis halleri in naturally fluctuating environments. Modelling showed that FLC acts as a quantitative tracer of the temperature over the preceding 6 weeks. The predictions of this model were verified experimentally, confirming its applicability to future climate changes. Second, the evolution of self-compatibility as exemplifying an evolutionary response is discussed. Evolutionary genomic and functional analyses have indicated that A. thaliana became self-compatible via a loss-of-function mutation in the male specificity gene, SCR/SP11. Self-compatibility evolved during glacial–interglacial cycles, suggesting its association with mate limitation during migration. Although the evolution of self-compatibility may confer short-term advantages, it is predicted to increase the risk of extinction in the long term because loss-of-function mutations are virtually irreversible.
Recent studies of FLC and SCR have identified gene functions in natura that are unlikely to be found in laboratory experiments. The significance of epigenetic changes and the study of non-model species with next-generation DNA sequencers is also discussed.
PMCID: PMC3170158  PMID: 21852275
Arabidopsis thaliana; Arabidopsis halleri; climate change; FLC; FLOWERING LOCUS C; phenotypic plasticity; SCR; S-LOCUS CYSTEINE-RICH PROTEIN; evolution of selfing; predictive models; sexual reproduction; SP11; S-LOCUS PROTEIN 11; SRK; S-RECEPTOR KINASE; ecological and evolutionary systems biology
5.  Coexistence of Trichome Variation in a Natural Plant Population: A Combined Study Using Ecological and Candidate Gene Approaches 
PLoS ONE  2011;6(7):e22184.
The coexistence of distinct phenotypes within populations has long been investigated in evolutionary ecology. Recent studies have identified the genetic basis of distinct phenotypes, but it is poorly understood how the variation in candidate loci is maintained in natural environments. In this study, we examined fitness consequences and genetic basis of variation in trichome production in a natural population of Arabidopsis halleri subsp. gemmifera. Half of the individuals in the study population produced trichomes while the other half were glabrous, and the leaf beetle Phaedon brassicae imposed intensive damage to both phenotypes. The fitness of hairy and glabrous plants showed no significant differences in the field during two years. A similar result was obtained when sibling hairy and glabrous plants were transplanted at the same field site, whereas a fitness cost of trichome production was detected under a weak herbivory condition. Thus, equivalent fitness of hairy and glabrous plants under natural herbivory allows their coexistence in the contemporary population. The pattern of polymorphism of the candidate trichome gene GLABROUS1 (GL1) showed no evidence of long-term maintenance of trichome variation within the population. Although balancing selection under fluctuating biotic environments is often proposed to explain the maintenance of defense variation, the lack of clear evidence of balancing selection in the study population suggests that other factors such as gene flow and neutral process may have played relatively large roles in shaping trichome variation at least for the single population level.
PMCID: PMC3139618  PMID: 21811571
6.  Cytotype diversity and genome size variation in eastern Asian polyploid Cardamine (Brassicaceae) species 
Annals of Botany  2009;105(2):249-264.
Background and Aims
Intraspecific ploidy-level variation is an important aspect of a species' genetic make-up, which may lend insight into its evolutionary history and future potential. The present study explores this phenomenon in a group of eastern Asian Cardamine species.
Plant material was sampled from 59 localities in Japan and Korea, which were used in karyological (chromosome counting) and flow cytometric analyses. The absolute nuclear DNA content (in pg) was measured using propidium iodide and the relative nuclear DNA content (in arbitrary units) was measured using 4,6-diamidino-2-phenylindole fluorochrome.
Key Results
Substantial cytotype diversity was found, with strikingly different distribution patterns between the species. Two cytotypes were found in C. torrentis sensu lato (4x and 8x, in C. valida and C. torrentis sensu stricto, respectively), which displays a north–south geographical pattern in Japan. Hypotheses regarding their origin and colonization history in the Japanese archipelago are discussed. In Korean C. amaraeiformis, only tetraploids were found, and these populations may in fact belong to C. valida. C. yezoensis was found to harbour as many as six cytotypes in Japan, ranging from hexa- to dodecaploids. Ploidy levels do not show any obvious geographical pattern; populations with mixed ploidy levels, containing two to four cytotypes, are frequently observed throughout the range. C. schinziana, an endemic of Hokkaido, has hexa- and octoploid populations. Previous chromosome records are also revised, showing that they are largely based on misidentified material or misinterpreted names.
Sampling of multiple populations and utilization of the efficient flow cytometric approach allowed the detection of large-scale variation in ploidy levels and genome size variation attributable to aneuploidy. These data will be essential in further phylogenetic and evolutionary studies.
PMCID: PMC2814755  PMID: 20007978
Cardamine amaraeiformis; Cardamine schinziana; Cardamine torrentis; Cardamine valida; Cardamine yezoensis; cytogeography; DNA ploidy level; flow cytometry; Japan; Korea; polyploidy
7.  Evolution and Control of Imprinted FWA Genes in the Genus Arabidopsis 
PLoS Genetics  2008;4(4):e1000048.
A central question in genomic imprinting is how a specific sequence is recognized as the target for epigenetic marking. In both mammals and plants, imprinted genes are often associated with tandem repeats and transposon-related sequences, but the role of these elements in epigenetic gene silencing remains elusive. FWA is an imprinted gene in Arabidopsis thaliana expressed specifically in the female gametophyte and endosperm. Tissue-specific and imprinted expression of FWA depends on DNA methylation in the FWA promoter, which is comprised of two direct repeats containing a sequence related to a SINE retroelement. Methylation of this element causes epigenetic silencing, but it is not known whether the methylation is targeted to the SINE-related sequence itself or the direct repeat structure is also necessary. Here we show that the repeat structure in the FWA promoter is highly diverse in species within the genus Arabidopsis. Four independent tandem repeat formation events were found in three closely related species. Another related species, A. halleri, did not have a tandem repeat in the FWA promoter. Unexpectedly, even in this species, FWA expression was imprinted and the FWA promoter was methylated. In addition, our expression analysis of FWA gene in vegetative tissues revealed high frequency of intra-specific variation in the expression level. In conclusion, we show that the tandem repeat structure is dispensable for the epigenetic silencing of the FWA gene. Rather, SINE-related sequence is sufficient for imprinting, vegetative silencing, and targeting of DNA methylation. Frequent independent tandem repeat formation events in the FWA promoter led us to propose that they may be a consequence, rather than cause, of the epigenetic control. The possible significance of epigenetic variation in reproductive strategies during evolution is also discussed.
Author Summary
Genomic imprinting, mono-allelic gene expression depending on the parent-of-origin, is an epigenetic process known in mammals and flowering plants. A central question in genomic imprinting is how a specific sequence is recognized as the target for epigenetic marking. In both mammals and plants, imprinted genes are often associated with tandem repeats and transposon-related sequences, but the role of these elements in epigenetic gene silencing remains elusive. FWA is an imprinted gene in Arabidopsis thaliana expressed specifically in the female gametophyte and endosperm. The FWA promoter is comprised of two direct repeats containing a sequence related to a SINE retroelement. Methylation of this element causes epigenetic silencing, but it is not known whether the methylation is targeted to the SINE-related sequence itself or the direct repeat structure is necessary. Here we show that the direct repeat structure is highly diverse in species within the genus Arabidopsis. Unexpectedly, we found that the direct repeat structure is dispensable for the epigenetic silencing and methylation of the FWA promoter. Rather, the SINE-related promoter sequence is sufficient for these features. Frequent independent formation of the tandem repeats suggests that they may be a consequence of the epigenetically controlled system.
PMCID: PMC2270340  PMID: 18389059

Results 1-7 (7)