PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Microsatellite primers for the gynodioecious grassland perennial Saxifraga granulata (Saxifragaceae)1 
Applications in Plant Sciences  2014;2(9):apps.1400040.
• Premise of the study: Nine polymorphic and 12 monomorphic microsatellite loci (simple sequence repeats [SSRs]) were isolated and characterized for the gynodioecious grassland perennial Saxifraga granulata.
• Methods and Results: Based on genomic screening of leaf material of four individuals from four populations, a total of 21 microsatellite primer pairs were designed for S. granulata. Nine loci were polymorphic and were optimized into two PCR multiplex reactions and tested on 100 individuals from five riparian populations from central Belgium. The number of alleles of the polymorphic loci ranged from three to 18, and gametic heterozygosity ranged from 0.26 to 0.94.
• Conclusions: The markers that are presented here are the first microsatellite markers reported for S. granulata and will be used to assess how river systems shape the spatial genetic structure and diversity of riparian populations of this species.
doi:10.3732/apps.1400040
PMCID: PMC4162666  PMID: 25225628
gynodioecy; heterozygosity; polyploidy; Saxifraga granulata; Saxifragaceae; simple sequence repeat (SSR)
2.  The impact of extensive clonal growth on fine-scale mating patterns: a full paternity analysis of a lily-of-the-valley population (Convallaria majalis) 
Annals of Botany  2013;111(4):623-628.
Background and Aims
The combination of clonality and a mating system promoting outcrossing is considered advantageous because outcrossing avoids the fitness costs of selfing within clones (geitonogamy) while clonality assures local persistence and increases floral display. The spatial spread of genetically identical plants (ramets) may, however, also decrease paternal diversity (the number of sires fertilizing a given dam) and fertility, particularly towards the centre of large clumped clones. This study aimed to quantify the impact of extensive clonal growth on fine-scale paternity patterns in a population of the allogamous Convallaria majalis.
Methods
A full analysis of paternity was performed by genotyping all flowering individuals and all viable seeds produced during a single season using AFLP. Mating patterns were examined and the spatial position of ramets was related to the extent of multiple paternity, fruiting success and seed production.
Key Results
The overall outcrossing rate was high (91 %) and pollen flow into the population was considerable (27 %). Despite extensive clonal growth, multiple paternity was relatively common (the fraction of siblings sharing the same father was 0·53 within ramets). The diversity of offspring collected from reproductive ramets surrounded by genetically identical inflorescences was as high as among offspring collected from ramets surrounded by distinct genets. There was no significant relationship between the similarity of the pollen load received by two ramets and the distance between them. Neither the distance of ramets with respect to distinct genets nor the distance to the genet centre significantly affected fruiting success or seed production.
Conclusions
Random mating and considerable pollen inflow most probably implied that pollen dispersal distances were sufficiently high to mitigate local mate scarcity despite extensive clonal spread. The data provide no evidence for the intrusion of clonal growth on fine-scale plant mating patterns.
doi:10.1093/aob/mct024
PMCID: PMC3605957  PMID: 23439847
Paternity analysis; mate diversity; outcrossing; mating opportunities; AFLP; reproductive success; seed set; ramet; lily-of-the-valley; Convallaria majalis
3.  Differences in dichogamy and herkogamy contribute to higher selfing in contrasting environments in the annual Blackstonia perfoliata (Gentianaceae) 
Annals of Botany  2013;111(4):651-661.
Background and Aims
The establishment of plant populations in novel environments may generate pronounced shifts in floral traits and plant mating systems, particularly when pollinators are scarce. In this study, floral morphology and mating system functioning are compared between recently established and older populations of the annual plant Blackstonia perfoliata that occur in different pollinator environments.
Methods
Hand-pollination and emasculation experiments were conducted to assess the extent of pollinator-mediated pollen deposition and pollen limitation, and the contribution of autonomous selfing to total seed production. Detailed measurements of key floral traits were performed to compare the flower morphology and mating system functioning between plants from both pollination environments.
Key Results
Pollinator-mediated pollen deposition was about twice as low in the recently colonized and pollinator-poor environment compared with the old and pollinator-rich sites, but total seed set was little affected by any type of pollen limitation. The contribution of autonomous selfing to total seed production was higher in the pollinator-poor sites than in the pollinator-rich sites (index of reproductive assurance = 0·56 and 0·17, respectively), and seed production was only poorly affected by selfing, whereas in the pollinator-rich populations selfing reduced total reproductive output by about 40 % compared with outcross pollination. Plants originating from pollinator-poor environments produced smaller flowers that showed significantly lower levels of dichogamy (i.e. protogyny) and herkogamy. These reductions resulted in a 2-fold higher capacity for autonomous selfing under pollinator-free conditions (index of autonomous selfing = 0·81 and 0·41 in plants originating from the pollinator-poor and pollinator-rich environment, respectively).
Conclusions
The results illustrate that plant populations colonizing novel environments can differ markedly in floral morphology and mating system functioning. Due to a temporal shift in the male phase, the breeding system of B. perfoliata shifted from delayed selfing under pollinator-rich conditions towards competing selfing in recently established populations, providing greater reproductive assurance when pollinators and/or reproductive partners are limited.
doi:10.1093/aob/mct031
PMCID: PMC3605963  PMID: 23408833
Autogamy; competing selfing; delayed selfing; dichogamy; herkogamy; pollen limitation; pollen quality; reproductive assurance; Blackstonia perfoliata; Gentianaceae
4.  Contributions of Covariance: Decomposing the components of stochastic population growth in Cypripedium calceolus 
The American naturalist  2013;181(3):10.1086/669155.
Although correlations between vital rates can have important effects on evolution and demography, few studies have investigated their effects on population dynamics. Here, we extend Life Table Response Experiments (LTREs) to variable environments, showing how to quantify contributions made by: (1) mean vital rates, (2) variability driven by environmental fluctuations, (3) correlations implying demographic tradeoffs and reflecting stage transition synchrony and (4) elasticities reflecting local selection pressures. Applying our methods to the Lady’s Slipper orchid Cypripedium calceolus, we found that mean rates accounted for 77.1% of all effects on the stochastic growth rate, variability accounted for 12.6%, elasticities 6.6% and correlations 3.7%. Stochastic effects accounted for 17.6%, 15.3% and 35.9% of the total in our three populations. Larger elasticities to transitions between dormancy states and stronger correlations between emergence and survival suggest that one population was under greater pressure to remain active while the other two showed survival payoffs for dormancy in poor years. Strong negative correlations between dormancy, emergence and stasis balanced opposing contributions, resulting in near-stationarity in two populations. These new methods provide an additional tool for researchers investigating stochastic population dynamics and should be useful for a broad range of applications in basic ecology and conservation biology.
doi:10.1086/669155
PMCID: PMC3810155  PMID: 23448889
Covariance; Stochastic Population Growth; Life Table Response Experiment (LTRE); Correlation; Elasticity
5.  Differences in fine-scale spatial genetic structure across the distribution range of the distylous forest herb Pulmonaria officinalis (Boraginaceae) 
BMC Genetics  2013;14:101.
Background
Geographical ranges of plants and their pollinators do not always entirely overlap and it has been suggested that the absence of specialized pollinators at range margins may induce changes in mating systems. Because a species’ mating system is known to have a considerable effect on within-population pollen movement, the extent of fine-scale spatial genetic structure (SGS) can be expected to differ between populations located at different parts of their geographical range. To test this prediction, we compared the fine-scale SGS between two core and two disjunct populations of the distylous forest herb Pulmonaria officinalis. Because in disjunct populations of this species the heteromorphic self-incompatibility system showed relaxation in the long-styled morph, but not in the short-styled morph, we also hypothesized that the extent of fine-scale SGS and clustering differed between morphs.
Results
Spatial autocorrelation analyses showed a significant decrease in genetic relatedness with spatial distance for both core and disjunct populations with the weakest SGS found in one of the core populations (Sp = 0.0014). No evidence of stronger SGS in the long-styled morph was found in the center of the range whereas one disjunct population showed a significantly (P = 0.029) higher SGS in the long-styled morph (SpL = 0.0070) than in the short-styled morph (SpS = 0.0044).
Conclusions
Consistent with previous analyses on distylous plant species, we found weak, but significant spatial genetic structure. However, the extent of SGS varied substantially between populations within regions, suggesting that population characteristics other than mating system (e.g. local pollinator assemblages, population history) may be as important in determining variation in SGS.
doi:10.1186/1471-2156-14-101
PMCID: PMC4015958  PMID: 24134743
Fine-scale spatial genetic structure; Disjunct; Core; Mating system; Morph clustering; Spatial autocorrelation
6.  Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species 
MicrobiologyOpen  2013;2(4):644-658.
Abstract
Floral nectar of animal-pollinated plants is commonly infested with microorganisms, yet little is known about the microorganisms inhabiting the floral nectar of orchids. In this study, we investigated microbial communities occurring in the floral nectar of seven Epipactis (Orchidaceae) species. Culturable bacteria and yeasts were isolated and identified by partially sequencing the small subunit (SSU) ribosomal RNA (rRNA) gene and the D1/D2 domains of the large subunit (LSU) rRNA gene, respectively. Using three different culture media, we found that bacteria were common inhabitants of the floral nectar of Epipactis. The most widely distributed bacterial operational taxonomic units (OTUs) in nectar of Epipactis were representatives of the family of Enterobacteriaceae, with an unspecified Enterobacteriaceae bacterium as the most common. In contrast to previous studies investigating microbial communities in floral nectar, very few yeast species (mainly of the genus Cryptococcus) were observed, and most of them occurred in very low densities. Total OTU richness (i.e., the number of bacterial and yeast OTUs per orchid species) varied between 4 and 20. Cluster analysis revealed that microbial communities of allogamous species differed from those of autogamous and facultatively autogamous species. This study extends previous efforts to identify microbial communities in floral nectar and indicates that the floral nectar of the orchids investigated mainly contained bacterial communities with moderate phylogenetic diversity.
doi:10.1002/mbo3.103
PMCID: PMC3948608  PMID: 23836678
Bacteria; floral nectar; microbial communities; orchids; yeasts.
7.  Evolutionary demography of iteroparous plants: incorporating non-lethal costs of reproduction into integral projection models 
Understanding the selective forces that shape reproductive strategies is a central goal of evolutionary ecology. Selection on the timing of reproduction is well studied in semelparous organisms because the cost of reproduction (death) can be easily incorporated into demographic models. Iteroparous organisms also exhibit delayed reproduction and experience reproductive costs, although these are not necessarily lethal. How non-lethal costs shape iteroparous life histories remains unresolved. We analysed long-term demographic data for the iteroparous orchid Orchis purpurea from two habitat types (light and shade). In both the habitats, flowering plants had lower growth rates and this cost was greater for smaller plants. We detected an additional growth cost of fruit production in the light habitat. We incorporated these non-lethal costs into integral projection models to identify the flowering size that maximizes fitness. In both habitats, observed flowering sizes were well predicted by the models. We also estimated optimal parameters for size-dependent flowering effort, but found a strong mismatch with the observed flower production. Our study highlights the role of context-dependent non-lethal reproductive costs as selective forces in the evolution of iteroparous life histories, and provides a novel and broadly applicable approach to studying the evolutionary demography of iteroparous organisms.
doi:10.1098/rspb.2012.0326
PMCID: PMC3367791  PMID: 22418255
cost of reproduction; delayed reproduction; demography; integral projection model; iteroparity; life-history evolution
8.  Rapid Buildup of Genetic Diversity in Founder Populations of the Gynodioecious Plant Species Origanum vulgare after Semi-Natural Grassland Restoration 
PLoS ONE  2013;8(6):e67255.
In most landscapes the success of habitat restoration is largely dependent on spontaneous colonization of plant species. This colonization process, and the outcome of restoration practices, can only be considered successful if the genetic makeup of founding populations is not eroded through founder effects and subsequent genetic drift. Here we used 10 microsatellite markers to investigate the genetic effects of recent colonization of the long-lived gynodioecious species Origanum vulgare in restored semi-natural grassland patches. We compared the genetic diversity and differentiation of fourteen recent populations with that of thirteen old, putative source populations, and we evaluated the effects of spatial configuration of the populations on colonization patterns. We did not observe decreased genetic diversity in recent populations, or inflated genetic differentiation among them. Nevertheless, a significantly higher inbreeding coefficient was observed in recent populations, although this was not associated with negative fitness effects. Overall population genetic differentiation was low (FST = 0.040). Individuals of restored populations were assigned to on average 6.1 different source populations (likely following the ‘migrant pool’ model). Gene flow was, however, affected by the spatial configuration of the grasslands, with gene flow into the recent populations mainly originating from nearby source populations. This study demonstrates how spontaneous colonization after habitat restoration can lead to viable populations in a relatively short time, overcoming pronounced founder effects, when several source populations are nearby. Restored populations can therefore rapidly act as stepping stones and sources of genetic diversity, likely increasing overall metapopulation viability of the study species.
doi:10.1371/journal.pone.0067255
PMCID: PMC3686717  PMID: 23840642
9.  Among-Population Variation in Microbial Community Structure in the Floral Nectar of the Bee-Pollinated Forest Herb Pulmonaria officinalis L 
PLoS ONE  2013;8(3):e56917.
Background
Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition.
Methodology/Principal Findings
We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0–4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2–13) OTUs0.03 and 7.9 (range 2–16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations.
Conclusions/Significance
We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar.
doi:10.1371/journal.pone.0056917
PMCID: PMC3594240  PMID: 23536759
10.  Reproductive isolation and hybridization in sympatric populations of three Dactylorhiza species (Orchidaceae) with different ploidy levels 
Annals of Botany  2011;109(4):709-720.
Background and Aims
The potential for gene exchange between species with different ploidy levels has long been recognized, but only a few studies have tested this hypothesis in situ and most of them focused on not more than two co-occurring species. In this study, we examined hybridization patterns in two sites containing three species of the genus Dactylorhiza (diploid D. incarnata and D. fuchsii and their allotetraploid derivative D. praetermissa).
Methods
To compare the strength of reproductive barriers between diploid species, and between diploid and tetraploid species, crossing experiments were combined with morphometric and molecular analyses using amplified fragment length polymorphism markers, whereas flow cytometric analyses were used to verify the hybrid origin of putative hybrids.
Key Results
In both sites, extensive hybridization was observed, indicating that gene flow between species is possible within the investigated populations. Bayesian assignment analyses indicated that the majority of hybrids were F1 hybrids, but in some cases triple hybrids (hybrids with three species as parents) were observed, suggesting secondary gene flow. Crossing experiments showed that only crosses between pure species yielded a high percentage of viable seeds. When hybrids were involved as either pollen-receptor or pollen-donor, almost no viable seeds were formed, indicating strong post-zygotic reproductive isolation and high sterility.
Conclusions
Strong post-mating reproductive barriers prevent local breakdown of species boundaries in Dactylorhiza despite frequent hybridization between parental species. However, the presence of triple hybrids indicates that in some cases hybridization may extend the F1 generation.
doi:10.1093/aob/mcr305
PMCID: PMC3286275  PMID: 22186278
AFLP; Dactylorhiza incarnata; Dactylorhiza praetermissa; genetic analysis; hybridization; morphology; polyploidy; reproductive isolation; triple hybrid
11.  Biased morph ratios and skewed mating success contribute to loss of genetic diversity in the distylous Pulmonaria officinalis 
Annals of Botany  2011;109(1):227-235.
Background and Aims
In heterostylous plant species, skewed morph ratios are not uncommon and may arise from a range of factors. Despite the recognized importance of skewed morph ratios on overall reproductive success within populations, little is known about the impact of skewed morph ratios on population genetic diversity and differentiation in heterostylous species. This study specifically aimed to clarify the effect of population size and morph bias on population genetic diversity and differentiation in the temperate forest herb Pulmonaria officinalis. This species is characterized by a distylous breeding system and shows morph-specific differences in reproductive success.
Methods
Genetic diversity was determined for 27 P. officinalis populations in northern Belgium by using eight recently developed microsatellite markers. Multiple regressions were used to assess the relationship between genetic diversity, morph bias and population size, and FST-values were calculated for short- and long-styled morphs separately to study genetic differentiation as a function of morph type.
Key Results
For all genetic measures used, morph bias was more important in explaining patterns of genetic diversity than population size, and in all cases patterns of population genetic diversity followed a quadratic function, which showed a symmetrical decrease in genetic diversity with increasing morph bias. However, probably due to the reproductive advantage of L-morphs relative to S-morphs, maximum genetic diversity was found in populations showing an excess of L-morphs (60·7 % L-morph). On the other hand, no significant difference in pairwise genetic distances between populations was observed between L- (0·107) and S-morphs (0·106).
Conclusions
Our results indicate that significant deviations from equal morph ratios not only affect plant reproductive success but also population genetic diversity of heterostylous plant species. Hence, when defining conservation measures for populations of heterostylous plant species, morph ratios should be considered as an important trait affecting their long-term population viability.
doi:10.1093/aob/mcr272
PMCID: PMC3241589  PMID: 22021814
Boraginaceae; distyly; FST; genetic diversity; microsatellite analysis; morph bias; Pulmonaria officinalis; skewed mating success
12.  Asymmetric gene introgression in two closely related Orchis species: evidence from morphometric and genetic analyses 
Background
In food-deceptive orchids of the genera Anacamptis, Neotinea and Orchis floral isolation has been shown to be weak, whereas late-acting reproductive barriers are mostly strong, often restricting hybridization to the F1 generation. Only in a few species hybridization extends beyond the F1 generation, giving rise to hybrid swarms. However, little is known about the abundance of later-generation hybrids and what factors drive their occurrence in hybrid populations. In this study, molecular analyses were combined with detailed morphological measurements in a hybrid population of two closely related Orchis species (Orchis militaris and O. purpurea) to investigate the hypothesis that the abundance of later-generation hybrids is driven by changes in floral characters after hybridization that exert selective pressures that in turn affect hybridization.
Results
Both the molecular and morphological data point to extensive genetic and morphological homogenization and asymmetric introgression. Estimating genomic clines from the multi-locus genotype data and testing for deviation from neutrality revealed that 30 out of 113 (27%) AFLP markers significantly deviated from neutral expectations. Plants with large floral displays or plant with flowers that resembled more O. purpurea had higher female fitness than plants with small floral displays or plants with flowers resembling more O. militaris, suggesting that directional selection may have contributed to the observed patterns of introgression.
Conclusions
These results indicate that in closely related orchid species hybridization and gene introgression may be partly driven by selection for floral traits of one of the parental types. However, because some pure individuals were still present in the studied population, the parental species appeared to be sufficiently isolated to survive the challenge of sympatry.
doi:10.1186/1471-2148-12-178
PMCID: PMC3523012  PMID: 22967086
Admixture; Hybrid swarm; Orchis; Orchidaceae; Reproductive isolation
13.  Variation in Mycorrhizal Associations with Tulasnelloid Fungi among Populations of Five Dactylorhiza Species 
PLoS ONE  2012;7(8):e42212.
Background
Orchid species rely on mycorrhizal symbioses with fungi to complete their life cycle. Although there is mounting evidence that orchids can associate with several fungi from different clades or families, less is known about the actual geographic distribution of these fungi and how they are distributed across different orchid species within a genus.
Methodology/Principal Findings
We investigated among-population variation in mycorrhizal associations in five species of the genus Dactylorhiza (D. fuchsii, D. incarnata, D. maculata, D. majalis and D. praetermissa) using culture-independent detection and identification techniques enabling simultaneous detection of multiple fungi in a single individual. Mycorrhizal specificity, determined as the number of fungal operational taxonomic units (OTUs), and phylogenetic diversity of fungi were compared between species, whereas discriminant analysis was used to compare mycorrhizal spectra across populations and species. Based on a 95% cut-off value in internal transcribed spacer (ITS) sequence similarity, a total of ten OTUs was identified belonging to three different clades within the Tulasnellaceae. Most OTUs were found in two or more Dactylorhiza species, and some of them were common and widespread, occurring in more than 50% of all sampled populations. Each orchid species associated with at least five different OTUs, whereas most individuals also associated with two or more fungal OTUs at the same time. Phylogenetic diversity, corrected for species richness, was not significantly different between species, confirming the generality of the observed orchid mycorrhizal associations.
Conclusions/Significance
We found that the investigated species of the genus Dactylorhiza associated with a wide range of fungal OTUs from the Tulasnellaceae, some of which were widespread and common. These findings challenge the idea that orchid rarity is related to mycorrhizal specificity and fungal distribution.
doi:10.1371/journal.pone.0042212
PMCID: PMC3411701  PMID: 22870305
14.  Variation in the functioning of autonomous self-pollination, pollinator services and floral traits in three Centaurium species 
Annals of Botany  2011;107(6):917-925.
Background and Aims
Reproductive assurance through autonomous selfing is thought to be one of the main advantages of self-fertilization in plants. Floral mechanisms that ensure autonomous seed set are therefore more likely to occur in species that grow in habitats where pollination is scarce and/or unpredictable.
Methods
Emasculation and pollen supplementation experiments were conducted under laboratory conditions to investigate the capacity for, and timing of autonomous selfing in three closely related Centaurium species (Centaurium erythraea, C. littorale and C. pulchellum). In addition, observations of flower visitors were combined with emasculation and pollen addition experiments in natural populations to investigate the degree of pollinator limitation and pollination failure and to assess the extent to which autonomous selfing conferred reproductive assurance.
Results
All three species were capable of autonomous selfing, although this capacity differed significantly between species (index of autonomous selfing 0·55 ± 0·06, 0·68 ± 0·09 and 0·92 ± 0·03 for C. erythraea, C. littorale and C. pulchellum, respectively). The efficiency and timing of autogamous selfing was primarily associated with differences in the degree of herkogamy and dichogamy. The number of floral visitors showed significant interspecific differences, with 1·6 ± 0·6, 5·4 ± 0·6 and 14·5 ± 2·1 floral visitors within a 2 × 2 m2 plot per 20-min observation period, for C. pulchellum, C. littorale and C. erythraea, respectively. Concomitantly, pollinator failure was highest in C. pulchellum and lowest in C. erythraea. Nonetheless, all three study species showed very low levels of pollen limitation (index of pollen limitation 0·14 ± 0·03, 0·11 ± 0·03 and 0·09 ± 0·02 for C. erythraea, C. littorale and C. pulchellum, respectively), indicating that autonomous selfing may guarantee reproductive assurance.
Conclusions
These findings show that limited availability of pollinators may select for floral traits and plant mating strategies that lead to a system of reproductive assurance via autonomous selfing.
doi:10.1093/aob/mcr032
PMCID: PMC3080621  PMID: 21320880
Autonomous selfing; Centaurium erythraea; Centaurium littorale; Centaurium pulchellum; competing selfing; delayed selfing; floral emasculation; pollen-limitation; pollinator failure; pollen : ovule ratio; reproductive assurance
15.  Mycorrhizal associations and reproductive isolation in three closely related Orchis species 
Annals of Botany  2010;107(3):347-356.
Background and Aims
The maintenance of species boundaries in sympatric populations of closely related species requires some kind of reproductive isolation that limits gene flow among species and/or prevents the production of viable progeny. Because in orchids mycorrhizal fungi are needed for seed germination and subsequent seedling establishment, orchid–mycorrhizal associations may be involved in acting as a post-mating barrier.
Methods
We investigated the strength of post-mating barriers up to the seed germination stage acting between three closely related Orchis species (Orchis anthropophora, O. militaris and O. purpurea) and studied the role of mycorrhizal fungi in hybridization by burying seed packets of pure and hybrid seeds. After retrieval and assessment of seed germination, the fungi associating with protocorms originating from hybrid and pure seeds were determined and compared with those associating with adult individuals using DNA array technology.
Results
Whereas pre-zygotic post-mating barriers were rather weak in most crosses, post-zygotic post-mating barriers were stronger, particularly when O. purpurea was crossed with O. anthropophora. Germination trials in the field showed that seed germination percentages of hybrid seeds were in most cases lower than those originating from pure crosses. In all species pair combinations, total post-mating reproductive isolation was asymmetric. Protocorms associated with a smaller range of fungal symbionts than adult plants, but there was considerable overlap in mycorrhizal associations between protocorms and their respective parents.
Conclusions
Our results suggest that mycorrhizal associations contribute little to reproductive isolation. Pre-mating barriers are probably the main factors determining hybridization rates between the investigated species.
doi:10.1093/aob/mcq248
PMCID: PMC3043927  PMID: 21186239
DNA array; gene flow; hybrid zones; mycorrhizal associations; reproductive barriers; seed germination
16.  Extremely low genotypic diversity and sexual reproduction in isolated populations of the self-incompatible lily-of-the-valley (Convallaria majalis) and the role of the local forest environment 
Annals of Botany  2010;105(5):769-776.
Background and Aims
Clonal growth is a common phenomenon in plants and allows them to persist when sexual life-cycle completion is impeded. Very low levels of recruitment from seed will ultimately result in low levels of genotypic diversity. The situation can be expected to be exacerbated in spatially isolated populations of obligated allogamous species, as low genotypic diversities will result in low availability of compatible genotypes and low reproductive success. Populations of the self-incompatible forest herb lily-of-the-valley (Convallaria majalis) were studied with the aim of inferring the relative importance of sexual and asexual recruitment. Then the aim was to establish a relationship between genotypic diversity, sexual reproduction and the local forest environment.
Methods
Highly polymorphic microsatellite markers were used to investigate clonal diversities and population genetic structure of 20 populations of C. majalis in central Belgium.
Key Results
Most of the populations studied consisted of a single genotype and linkage disequilibrium within populations was high, manifesting clonal growth as the main mode of reproduction. A population consisting of multiple genotypes mainly occurred in locations with a thin litter layer and high soil phosphorus levels, suggesting environment-mediated sporadic recruitment from seed. Highly significant genetic differentiation indicated that populations are reproductively isolated. In agreement with the self-incompatibility of C. majalis, monoclonal populations showed very low or even absent fruit set.
Conclusions
Lack of sexual recruitment in spatially isolated C. majalis populations has resulted in almost monoclonal populations with reduced or absent sexual reproduction, potentially constraining their long-term persistence. The local forest environment may play an important role in mediating sexual recruitment in clonal forest plant species.
doi:10.1093/aob/mcq042
PMCID: PMC2859916  PMID: 20228091
Convallaria majalis; clonal; genotypic diversity; population genetics; remnant populations; SSR; forest herb; rhizomatous; self-incompatible; reproductive success
17.  Large population sizes mitigate negative effects of variable weather conditions on fruit set in two spring woodland orchids 
Biology Letters  2009;5(4):495-498.
Global circulation models predict increased climatic variability, which could increase variability in demographic rates and affect long-term population viability. In animal-pollinated species, pollination services, and thus fruit and seed set, may be highly variable among years and sites, and depend on both local environmental conditions and climatic variables. Orchid species may be particularly vulnerable to disruption of their pollination services, as most species depend on pollinators for successful fruit set and because seed germination and seedling recruitment are to some extent dependent on the amount of fruits and seeds produced. Better insights into the factors determining fruit and seed set are therefore indispensable for a better understanding of population dynamics and viability of orchid populations under changing climatic conditions. However, very few studies have investigated spatio-temporal variation in fruit set in orchids. Here, we quantified fruit production in eight populations of the orchid Orchis purpurea that does not reward pollinators and 13 populations of the rewarding Neottia (Listera) ovata during five consecutive years (2002–2006). Fruit production in large populations showed much higher stability than that in small populations and was less affected by extreme weather conditions. Our results highlight the potential vulnerability of small orchid populations to an increasingly variable climate through highly unpredictable fruit-set patterns.
doi:10.1098/rsbl.2009.0262
PMCID: PMC2781932  PMID: 19457885
environmental stochasticity; female reproductive success; orchids; pollination; temporal variability
18.  Rapid loss of genetic variation in a founding population of Primula elatior (Primulaceae) after colonization 
Annals of Botany  2008;103(5):777-783.
Background and Aims
Land-use changes and associated extinction/colonization dynamics can have a large impact on population genetic diversity of plant species. The aim of this study was to investigate genetic diversity in a founding population of the self-incompatible forest herb Primula elatior and to elucidate the processes that affect genetic diversity shortly after colonization.
Methods
AFLP markers were used to analyse genetic diversity across three age classes and spatial genetic structure within a founding population of P. elatior in a recently established stand in central Belgium. Parentage analyses were used to assess the amount of gene flow from outside the population and to investigate the contribution of mother plants to future generations.
Results
The genetic diversity of second and third generation plants was significantly reduced compared with that of first generation plants. Significant spatial genetic structure was observed. Parentage analyses showed that <20 % of the youngest individuals originated from parents outside the study population and that >50 % of first and second generation plants did not contribute to seedling recruitment.
Conclusions
These results suggest that a small effective population size and genetic drift can lead to rapid decline of genetic diversity of offspring in founding populations shortly after colonization. This multigenerational study also highlights that considerable amounts of gene flow seem to be required to counterbalance genetic drift and to sustain high levels of genetic diversity after colonization in recently established stands.
doi:10.1093/aob/mcn253
PMCID: PMC2707865  PMID: 19106180
AFLP; colonization; forest regeneration; genetic diversity; genetic drift; parentage analysis; spatial genetic structure

Results 1-18 (18)