Search tips
Search criteria

Results 1-25 (256)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Suggestion of GLYAT gene underlying variation of bone size and body lean mass as revealed by a bivariate genome-wide association study 
Human genetics  2012;132(2):189-199.
Bone and muscle, two major tissue types of musculoskeletal system, have strong genetic determination. Abnormality in bone and/or muscle may cause musculoskeletal diseases such as osteoporosis and sarcopenia. Bone size phenotypes (BSPs), such as hip bone size (HBS), appendicular bone size (ABS), are genetically correlated with body lean mass (mainly muscle mass). However, the specific genes shared by these phenotypes are largely unknown. In this study, we aimed to identify the specific genes with pleiotropic effects on BSPs and appendicular lean mass (ALM).
We performed a bivariate genome-wide association study (GWAS) by analyzing ~690,000 SNPs in 1,627 unrelated Han Chinese adults (802 males and 825 females) followed by a replication study in 2,286 unrelated US Caucasians (558 males and 1728 females).
We identified 14 interesting single nucleotide polymorphisms (SNPs) that may contribute to variation of both BSPs and ALM, with p values <10−6 in discovery stage. Among them, the association of three SNPs (rs2507838, rs7116722, and rs11826261) in/near GLYAT (glycine-N-acyltransferase) gene was replicated in US Caucasians, with p values ranging from 1.89×10−3 to 3.71×10−4 for ALM-ABS, from 5.14×10−3 to 1.11×10−2 for ALM-HBS, respectively. Meta-analyses yielded stronger association signals for rs2507838, rs7116722, and rs11826261, with pooled p values of 1.68×10−8, 7.94×10−8, 6.80×10−8 for ALB-ABS and 1.22×10−4, 9.85×10−5, 3.96×10−4 for ALM-HBS, respectively. Haplotype allele ATA based on these three SNPs were also associated with ALM-HBS and ALM-ABS in both discovery and replication samples. Interestingly, GLYAT was previously found to be essential to glucose metabolism and energy metabolism, suggesting the gene’s dual role in both bone development and muscle growth.
Our findings, together with the prior biological evidence, suggest the importance of GLYAT gene in co-regulation of bone phenotypes and body lean mass.
PMCID: PMC3682481  PMID: 23108985
Bivariate GWAS; Bone size; Lean mass; GLYAT
2.  Pathway-Based Association Analyses Identified TRAIL Pathway for Osteoporotic Fractures 
PLoS ONE  2011;6(7):e21835.
Hip OF carries the highest morbidity and mortality. Previous studies revealed that individual genes/loci in the Tumor Necrosis Factor (TNF) -Related Apoptosis-Inducing Ligand (TRAIL) pathway were associated with bone metabolism. This study aims to verify the potential association between hip OF and TRAIL pathway.
Using genome-wide genotype data from Affymetrix 500 K SNP arrays, we performed novel pathway-based association analyses for hip OF in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls).
The TRAIL pathway achieved a significant p value (p = 0.01) for association with hip OF. Among the 38 genes in the TRAIL pathway, seven genes achieved nominally significant association with hip OF (p<0.05); the TNFSF10 (TRAIL) gene obtained the most significant p value (p = 1.70×10−4). SNPs (rs719126, rs6533015, rs9594738, rs1805034, rs11160706) from five genes (CFLAR, NFKB1, TNFSF11, TNFRSF11A, TRAF3) of the pathway had minor alleles that appear to be protective to hip OF. SNPs (rs6445063 and rs4259415) from two genes (TNFSF10 and TNFRSF10B) of the pathway had minor alleles (A) that are associated with an increased risk of hip OF, with the ORs (odds ratios) of 16.51 (95%CI:3.83–71.24) and 1.37 (95%CI:1.08–1.74), respectively.
Our study supports the potential role of the TRAIL pathway in the pathogenesis of hip OF in Chinese Han population. Further functional study of this pathway will be pursued to determine the mechanism by which it confers risk to hip OF.
PMCID: PMC3132733  PMID: 21760914
3.  Pathway-Based Genome-Wide Association Analysis Identified the Importance of Regulation-of-Autophagy Pathway for Ultradistal Radius BMD 
Journal of Bone and Mineral Research  2010;25(7):1572-1580.
Wrist fracture is not only one of the most common osteoporotic fractures but also a predictor of future fractures at other sites. Wrist bone mineral density (BMD) is an important determinant of wrist fracture risk, with high heritability. Specific genes underlying wrist BMD variation are largely unknown. Most published genome-wide association studies (GWASs) have focused only on a few top-ranking single-nucleotide polymorphisms (SNPs)/genes and considered each of the identified SNPs/genes independently. To identify biologic pathways important to wrist BMD variation, we used a novel pathway-based analysis approach in our GWAS of wrist ultradistal radius (UD) BMD, examining approximately 500,000 SNPs genome-wide from 984 unrelated whites. A total of 963 biologic pathways/gene sets were analyzed. We identified the regulation-of-autophagy (ROA) pathway that achieved the most significant result (p = .005, qfdr = 0.043, pfwer = 0.016) for association with UD BMD. The ROA pathway also showed significant association with arm BMD in the Framingham Heart Study sample containing 2187 subjects, which further confirmed our findings in the discovery cohort. Earlier studies indicated that during endochondral ossification, autophagy occurs prior to apoptosis of hypertrophic chondrocytes, and it also has been shown that some genes in the ROA pathway (e.g., INFG) may play important roles in osteoblastogenesis or osteoclastogenesis. Our study supports the potential role of the ROA pathway in human wrist BMD variation and osteoporosis. Further functional evaluation of this pathway to determine the mechanism by which it regulates wrist BMD should be pursued to provide new insights into the pathogenesis of wrist osteoporosis. © 2010 American Society for Bone and Mineral Research.
PMCID: PMC3153999  PMID: 20200951
osteoporosis; bone mineral density; genome-wide association; regulation of autophagy; whites
4.  Genome-Wide Association Study for Femoral Neck Bone Geometry 
Poor femoral neck bone geometry at the femur is an important risk factor for hip fracture. We conducted a genome-wide association study (GWAS) of femoral neck bone geometry, examining approximately 379,000 eligible single-nucleotide polymorphisms (SNPs) in 1000 Caucasians. A common genetic variant, rs7430431 in the receptor transporting protein 3 (RTP3) gene, was identified in strong association with the buckling ratio (BR, P = 1.6 × 10−7), an index of bone structural instability, and with femoral cortical thickness (CT, P = 1.9 × 10−6). The RTP3 gene is located in 3p21.31, a region that we found to be linked with CT (LOD = 2.19, P = 6.0 × 10−4) in 3998 individuals from 434 pedigrees. The replication analyses in 1488 independent Caucasians and 2118 Chinese confirmed the association of rs7430431 to BR and CT (combined P = 7.0 × 10−3 for BR and P = 1.4 × 10−2 for CT). In addition, 350 hip fracture patients and 350 healthy control individuals were genotyped to assess the association of the RTP3 gene with the risk of hip fracture. Significant association between a nearby common SNP, rs10514713 of the RTP3 gene, and hip fracture (P = 1.0 × 10−3) was found. Our observations suggest that RTP3 may be a novel candidate gene for femoral neck bone geometry. © 2010 American Society for Bone and Mineral Research
PMCID: PMC3153387  PMID: 20175129
genome-wide association; femoral neck bone geometry; bone fracture; RTP3
5.  The regulation-of-autophagy pathway may influence Chinese stature variation: evidence from elder adults 
Journal of human genetics  2010;55(7):441-447.
Recent success of genome-wide association studies (GWASs) on human height variation emphasized the effects of individual loci or genes. In this study, we used a developed pathway-based approach to further test biological pathways for potential association with stature, by examining ∼370 000 single-nucleotide polymorphisms (SNPs) across the human genome in 618 unrelated elder Han Chinese. A total of 626 biological pathways annotated by any of the three major public pathway databases (KEGG, BioCarta and Ambion GeneAssist Pathway Atlas) were tested. The regulation-of-autophagy (ROA) (nominal P=0.012) pathway was marginally significantly associated with human stature after our family wise error rate multiple-testing correction. We also used 1000 random recruited US whites for further replication. Interestingly, the ROA pathway presented the strongest signals in whites for height variation (nominal P=0.002). The results correspond to biological roles of the ROA pathway in human long bone development and growth. Our findings also implied that multiple-genetic factors may work jointly as a functional unit (pathway), and the traditional GWASs could have missed important genetic information imbedded in those less significant markers.
PMCID: PMC2923432  PMID: 20448653
autophagy; GWAS; height; pathway; stature
6.  HMGA2 Is Confirmed To Be Associated with Human Adult Height 
Annals of human genetics  2009;74(1):11-16.
Recent genome-wide association studies have identified a novel polymorphism rs1042725 in HMGA2 gene for human adult height, a highly heritable complex trait. Replications in independent populations are needed to evaluate a positive finding and determine its generality. Thus, we performed a replication study to examine the associations between polymorphisms in HMGA2 and adult height in two US Caucasian populations (an unrelated sample of 998 subjects and a family-based sample of 8,385 subjects) and a Chinese population (1,638 unrelated Han subjects). We confirmed the association between rs1042725 in HMGA2 and adult height both in the unrelated and family-based Caucasian populations (overall P = 4.25×10−9). Another two SNPs (rs7968902 and rs7968682), which were in high linkage disequilibrium with rs1042725, also achieved the significance level in both Caucasian populations (overall P = 6.34×10−7, and 2.72×10−9, respectively). Our results provide a strong support to the initial finding. Moreover, SNP rs1042725 was firstly found to be associated with adult height (P = 0.008) in the Chinese population, and the effect is in the same direction as in the Caucasian populations, suggesting that it is a common variant across different populations. Our study further highlights the importance of the HMGA2 gene involved in normal growth.
PMCID: PMC2972475  PMID: 19930247
replication; adult height; HMGA2; association
7.  Genome-wide association study identifies two novel loci containing FLNB and SBF2 genes underlying stature variation 
Human Molecular Genetics  2008;18(9):1661-1669.
Human stature, as an important physical index in clinical practice and a usual covariate in gene mapping of complex disorders, is a highly heritable complex trait. To identify specific genes underlying stature, a genome-wide association study was performed in 1000 unrelated homogeneous Caucasian subjects using Affymetrix 500K arrays. A group of seven contiguous markers in the region of SBF2 gene (Set-binding factor 2) are associated with stature, significantly so at the genome-wide level after false discovery rate (FDR) correction (FDR q = 0.034–0.042). Three SNPs in another SNP group in the Filamin B (FLNB) gene were also associated with stature, significantly so with FDR q = 0.042–0.048. In follow-up independent replication studies, rs10734652 in the SBF2 gene was significantly (P = 0.036) and suggestively (P = 0.07) associated with stature in Caucasian families and 1306 unrelated Caucasian subjects, respectively, and rs9834312 in the FLNB gene was also associated with stature in such two independent Caucasian populations (P = 0.008 in unrelated sample and P = 0.049 in family sample). Particularly, additional significant replication association signals were detected in Chinese, an ethnic population different from Caucasian, between rs9834312 and stature in 619 unrelated northern Chinese subjects (P = 0.017), as well as between rs10734652 and stature in 2953 unrelated southern Chinese subjects (P = 0.048). This study also provides additional replication evidence for some of the already published stature loci. These results, together with the known functional relevance of the SBF2 and FLNB genes to skeletal linear growth and bone formation, support that two regions containing FLNB and SBF2 genes are two novel loci underlying stature variation.
PMCID: PMC2667283  PMID: 19039035
8.  Genome-Wide Association Study Identifies ALDH7A1 as a Novel Susceptibility Gene for Osteoporosis 
PLoS Genetics  2010;6(1):e1000806.
Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08×10−9, odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39×10−6), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis.
Author Summary
Osteoporosis is a major health concern worldwide. It is a highly heritable disease characterized mainly by low bone mineral density (BMD) and/or osteoporotic fractures. However, the specific genetic variants determining risk for low BMD or OF are largely unknown. Here, taking advantage of recent technological advances in human genetics, we performed a genome-wide association study and follow-up validation studies to identify genetic variants for osteoporosis. By examining a total of 11,568 individuals from Chinese and Caucasian populations, we discovered a susceptibility gene, ALDH7A1, which is associated with hip osteoporotic fracture and BMD. ALDH7A1 might inhibit osteoblast proliferation and decrease bone formation. Our finding opens a new avenue for exploring the pathophysiology of osteoporosis.
PMCID: PMC2794362  PMID: 20072603
9.  Polymorphisms of the low‐density lipoprotein receptor‐related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family‐based association study 
Journal of Medical Genetics  2006;43(10):798-803.
The low‐density lipoprotein receptor‐related protein 5 (LRP5) gene, essential for glucose and cholesterol metabolism, may have a role in the aetiology of obesity, an important risk factor for diabetes.
Participants and methods
To investigate the association between LRP5 polymorphisms and obesity, 27 single‐nucleotide polymorphisms (SNPs), spacing about 5 kb apart on average and covering the full transcript length of the LRP5 gene, were genotyped in 1873 Caucasian people from 405 nuclear families. Obesity (defined as body mass index (BMI) >30 kg/m2) and three obesity‐related phenotypes (BMI, fat mass and percentage of fat mass (PFM)) were investigated.
Single markers (12 tagging SNPs and 4 untaggable SNPs) and haplotypes (5 blocks) were tested for associations, using family‐based designs. SNP4 (rs4988300) and SNP6 (rs634008) located in block 2 (intron 1) showed significant associations with obesity and BMI after Bonferroni correction (SNP4: p<0.001 and p = 0.001, respectively; SNP6: p = 0.002 and 0.003, respectively). The common allele A for SNP4 and minor allele G for SNP6 were associated with an increased risk of obesity. Significant associations were also observed between common haplotype A–G–G–G of block 2 with obesity, BMI, fat mass and PFM with global empirical values p<0.001, p<0.001, p = 0.003 and p = 0.074, respectively. Subsequent sex‐stratified analyses showed that the association in the total sample between block 2 and obesity may be mainly driven by female subjects.
Intronic variants of the LRP5 gene are markedly associated with obesity. We hypothesise that such an association may be due to the role of LRP5 in the WNT signalling pathway or lipid metabolism. Further functional studies are needed to elucidate the exact molecular mechanism underlying our finding.
PMCID: PMC1829485  PMID: 16723389
10.  Genome-wide association scan for stature in Chinese: evidence for ethnic specific loci 
Human genetics  2008;125(1):1-9.
In Caucasian, several studies have identified some common variants associated with human stature variation. However, no such study was performed in Chinese, which is the largest population in the world and evidently differs from Caucasian in genetic background. To identify common or ethnic specific genes for stature in Chinese, an initial GWAS and follow-up replication study were performed. Our initial GWAS study found that a group of 13 contiguous SNPs, which span a region of ∼150 kb containing two neighboring genes, zinc finger protein (ZNP) 510 and ZNP782, achieved strong signals for association with stature, with P values ranging from 9.71 × 10−5 to 3.11 × 10−6. After false discovery rate correction for multiple testing, 9 of the 13 SNPs remain significant (FDR q = 0.036–0.046). The follow-up replication study in an independent 2,953 unrelated southern Chinese confirmed the association of rs10816533 with stature (P = 0.029). All the13 SNPs were in consistently strong linkage disequilibrium (D′ > 0.99) and formed a single perfect haplotype block. The minor allele frequencies for the 13 contiguous SNPs have evidently ethnic difference, which range from 0.21 to 0.33 in Chinese but have as low as ∼0.017 reported in dbSNP database in Caucasian. The present results suggest that the genomic region containing the ZNP510 and ZNP782 genes is an ethnic specific locus associated with stature variation in Chinese.
PMCID: PMC2730511  PMID: 19030899
11.  Robust and Comprehensive Analysis of 20 Osteoporosis Candidate Genes by Very High-Density Single-Nucleotide Polymorphism Screen Among 405 White Nuclear Families Identified Significant Association and Gene–Gene Interaction 
Many “novel” osteoporosis candidate genes have been proposed in recent years. To advance our knowledge of their roles in osteoporosis, we screened 20 such genes using a set of high-density SNPs in a large family-based study. Our efforts led to the prioritization of those osteoporosis genes and the detection of gene–gene interactions.
We performed large-scale family-based association analyses of 20 novel osteoporosis candidate genes using 277 single nucleotide polymorphisms (SNPs) for the quantitative trait BMD variation and the qualitative trait osteoporosis (OP) at three clinically important skeletal sites: spine, hip, and ultradistal radius (UD).
Materials and Methods
One thousand eight hundred seventy-three subjects from 405 white nuclear families were genotyped and analyzed with an average density of one SNP per 4 kb across the 20 genes. We conducted association analyses by SNP- and haplotype-based family-based association test (FBAT) and performed gene–gene interaction analyses using multianalytic approaches such as multifactor-dimensionality reduction (MDR) and conditional logistic regression.
Results and Conclusions
We detected four genes (DBP, LRP5, CYP17, and RANK) that showed highly suggestive associations (10,000-permutation derived empirical global p ≤ 0.01) with spine BMD/OP; four genes (CYP19, RANK, RANKL, and CYP17) highly suggestive for hip BMD/OP; and four genes (CYP19, BMP2, RANK, and TNFR2) highly suggestive for UD BMD/OP. The associations between BMP2 with UD BMD and those between RANK with OP at the spine, hip, and UD also met the experiment-wide stringent criterion (empirical global p ≤ 0.0007). Sex-stratified analyses further showed that some of the significant associations in the total sample were driven by either male or female subjects. In addition, we identified and validated a two-locus gene–gene interaction model involving GCR and ESR2, for which prior biological evidence exists. Our results suggested the prioritization of osteoporosis candidate genes from among the many proposed in recent years and revealed the significant gene–gene interaction effects influencing osteoporosis risk.
PMCID: PMC1829486  PMID: 17002564
osteoporosis; BMD; single nucleotide polymorphism; haplotype; association; gene-gene interaction
12.  Polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family-based association study 
Journal of medical genetics  2006;43(10):798-803.
The low-density lipoprotein receptor-related protein 5 (LRP5) gene, essential for glucose and cholesterol metabolism, may have a role in the aetiology of obesity, an important risk factor for diabetes.
Participants and methods
To investigate the association between LRP5 polymorphisms and obesity, 27 single-nucleotide polymorphisms (SNPs), spacing about 5 kb apart on average and covering the full transcript length of the LRP5 gene, were genotyped in 1873 Caucasian people from 405 nuclear families. Obesity (defined as body mass index (BMI) > 30 kg/m2) and three obesity-related phenotypes (BMI, fat mass and percentage of fat mass (PFM)) were investigated.
Single markers (12 tagging SNPs and 4 untaggable SNPs) and haplotypes (5 blocks) were tested for associations, using family-based designs. SNP4 (rs4988300) and SNP6 (rs634008) located in block 2 (intron 1) showed significant associations with obesity and BMI after Bonferroni correction (SNP4: p < 0.001 and p = 0.001, respectively; SNP6: p = 0.002 and 0.003, respectively). The common allele A for SNP4 and minor allele G for SNP6 were associated with an increased risk of obesity. Significant associations were also observed between common haplotype A–G–G–G of block 2 with obesity, BMI, fat mass and PFM with global empirical values p < 0.001, p < 0.001, p = 0.003 and p = 0.074, respectively. Subsequent sex-stratified analyses showed that the association in the total sample between block 2 and obesity may be mainly driven by female subjects.
Intronic variants of the LRP5 gene are markedly associated with obesity. We hypothesise that such an association may be due to the role of LRP5 in the WNT signalling pathway or lipid metabolism. Further functional studies are needed to elucidate the exact molecular mechanism underlying our finding.
PMCID: PMC1829485  PMID: 16723389
13.  Polymorphisms of estrogen-biosynthesis genes CYP17 and CYP19 may influence age at menarche: a genetic association study in Caucasian females 
Human molecular genetics  2006;15(16):2401-2408.
Variation in age at menarche (AAM) is known to be substantially influenced by genetic factors, but the true causal genes remain largely unidentified. Because the increased amplitude of estrogen exposure of tissues initiates the onset of menarche, the genes involved in estrogen biosynthesis are natural candidate genes underlying AAM. Our study aimed to identify whether the CYP17 and CYP19, the two key genes involved in the biosynthesis of estrogen, are associated with AAM variation in 1048 females from 354 Caucasian nuclear families. We genotyped 38 SNPs and established the linkage disequilibrium blocks and haplotype structures that covered the full transcript length of those two genes. Family-based and population-based statistical analyses were used to test for associations with all of the single SNPs and haplotypes. Both methods consistently detected significant associations for five SNPs of CYP19 with AAM. Haplotype analyses corroborated our single-SNP results by showing that the haplotypes in block 1 were highly significant to AAM in population-based analyses. However, we could not find any association of CYP17 with AAM. Our study is the first to suggest the important effect of CYP19 on AAM variation in Caucasian females. It will be valuable to replicate and confirm these findings in other independent studies, aiming at eventually finding the hidden genetic mechanisms underlying the variation in AAM.
PMCID: PMC1803760  PMID: 16782804
14.  Genetic Analysis Identifies DDR2 as a Novel Gene Affecting Bone Mineral Density and Osteoporotic Fractures in Chinese Population 
PLoS ONE  2015;10(2):e0117102.
DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD) and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls) and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10−4, β: −0.018 for allele C), rs7553831 (P = 1.30×10−4, β: −0.018 for allele T), and rs6697469 (P = 1.59×10−3, β: −0.015 for allele C), separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10−4, β: −0.016) where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42) in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn’t observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.
PMCID: PMC4319719  PMID: 25658585
15.  Epidemiological and Molecular Characteristics of the PB1-F2 Proteins in H7N9 Influenza Viruses, Jiangsu 
BioMed Research International  2015;2015:804731.
The recent sporadic infections of humans in China with previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern. The aim is to find out the epidemiological and molecular analysis of the PB1-F2 proteins in H7N9 influenza viruses, in Jiangsu province. Sequences were obtained from GISAID database. Data were analyzed by using Molecular Evolutionary Genetics Analysis software and Bayesian Markov chain Monte Carlo method. From March 1, 2013, to May 31, 2014, 53 patients were confirmed to be infected with the H7N9 virus; one was a retrospective case in Jiangsu province. 38 sequences of PB1 in H7N9 of Jiangsu were obtained from the GISAID online and were then divided into three lineages. Of these sequences, 4 sequences and 3 sequences encode an N-terminally truncated PB1-F2 (52aa)polypeptide and C-terminally truncated PB1-F2 (76aa) polypeptide, respectively. The remaining sequences encode a full-length PB1-F2 (90aa). We estimated a mean evolutionary rate of 3.053 × 10−3 subs/site/year (95% HPD: 2.021 × 10−3–4.051 × 10−3). The site-by-site analysis of selection pressure analysis revealed positively and negatively (12, 3), respectively, selected sites. Influenza A (H7N9) virus adapting into new host, PB1-F2 of H7N9, might be faced with higher selection pressures.
PMCID: PMC4310227  PMID: 25649785
16.  Up-Regulation of miR-9 Target CBX7 to Regulate Invasion Ability of Bladder Transitional Cell Carcinoma 
Bladder urothelial carcinoma is the most common genitourinary system cancer in China. The objective of this study was to investigate whether the miR-9 can regulate the invasion ability of human bladder transitional cell carcinoma cells by down-regulation of CBX7.
The expression of miR-9 was detected by quantitative real-time PCR in bladder transitional cell carcinomas (TCC) and normal bladder transitional cell (NBTC) samples. Bioinformatics software was used to predict some potential target genes of miR-9. T24 cells were transfected with pre-miR-9, and the CBX7 protein expression was detected by Western blot. Luciferase activities assay was selected to verify that CBX7 was a direct and specific gene of miR-9. T24 cells were transfected with pcDNA-CBX7, and the expression of CBX7 gene was detected. Then, the transwell assay was used to detect the invasion ability of T24 cells with CBX7 over-expression.
The expression of miR-9 increased significantly in human TCC specimens compared to that in NBTC specimens. TargetScan and PicTar software programs predicted CBX7 gene was a target gene of miR-9. The pre-miR-9 could up-regulate the miR-9 expression and down-regulate CBX7 protein expression. The luciferase activities assay verified that CBX7 gene was a direct and specific target gene of miR-9. The pcDNA-CBX7 transfection could up-regulate the CBX7 protein expression, and the invasion ability of T24 cells with CBX7 over-expression decreased significantly.
Aberrantly expressed miR-9 contributes to T24 cells invasion, partly through directly down-regulating CBX7 protein expression in TCC. This miRNA signature offers a new potential therapeutic target for TCC.
PMCID: PMC4307688  PMID: 25596753
MicroRNAs; Neoplasm Invasiveness; Urinary Bladder Neoplasms
17.  Advances in Computational Genomics 
BioMed Research International  2015;2015:187803.
PMCID: PMC4300036  PMID: 25629039
18.  Effect of high temperature yoga exercise on improving physical and mental well-being of overweight middle-aged and young women 
Objective: To explore the effect of high temperature yoga exercise on improving physical and psychological well-being of overweight middle-aged and young women. Design: 50 overweight middle-aged and young women from yoga clubs were selected. The indexes of their constitution, physiological functions, psychological adaptation were measured and compared before and after one year of uninterrupted high temperature yoga exercise. Results: The indexes of the subjects’ constitution and physiological functions were remarkably uplifted (P < 0.05); their psychological adaptation was improved as well. Conclusion: Aerobics represented by high temperature yoga can improve body shape, lower lipid, reduce weight, and exert an evident therapeutic effect on improving physiological functions and boosting psychological well-being.
PMCID: PMC4307564  PMID: 25664117
Yoga; high temperature; overweight; women; physical health; psychological well-being; effect
19.  MiR-210 Up-Regulation Inhibits Proliferation and Induces Apoptosis in Glioma Cells by Targeting SIN3A 
The aim of this study was to determine whether miR-210 can affect the apoptosis and proliferation of human U251 glioma cells from down-regulating SIN3A.
The expression of miRNA-210 was detected by quantitative real-time PCR in normal brain tissue and glioma samples. The apoptosis and proliferation ability of U251 cells were analyzed by MTT and flow cytometry assay after anti-miR-210 transfection. For the regulation mechanism analysis of miR-210, TargetScan, PicTar, and microRNA were selected to predict some potential target genes of miR-210. The predicted gene was identified to be the direct and specific target gene of miR-210 by luciferase activities assay and Western blot. RNA interference technology was used to confirm that the apoptosis and proliferation effects of miR-210 were directly induced by SIN3A.
The expression of miR-210 increased significantly in glioma in comparison with normal brain tissue. The silence of miR-210 expression could inhibit the proliferation of U251 cells and induce the apoptosis. Mechanism analysis revealed that SIN3A was a specific and direct target gene of miR-210. The siRNA-SIN3A could down-regulate the expression of SIN3A protein, which was up-regulated in U251 cells by anti-miR-210 transfection, and our experiments found that silence of SIN3A could inhibit the apoptosis and sharply increase the proliferation of U251 cells. The regulation effects of anti-miR-210 on apoptosis and proliferation can be reversed respectively by the expression silence of SIN3A.
Aberrantly expressed miR-210 regulates human U251 glioma cells apoptosis and proliferation partly through directly down-regulating SIN3A protein expression. This might offer a new potential therapeutic stratagem for glioma.
PMCID: PMC4266365  PMID: 25481483
Glioma; MicroRNAs; Neoplastic Stem Cells
20.  Effects of Acupuncture Knife on Inflammatory Factors and Pain in Third Lumbar Vertebrae Transverse Process Syndrome Model Rats 
The aim of this paper was to explore the long-term effects and pain relief mechanism of acupuncture knife on third lumbar vertebrae (L3) transverse process syndrome. Forty SD rats were randomized into control, model, electroacupuncture (EA), and acupuncture knife (AK) group. Except control rats, other rats were subjected to an operation to emulate L3 transverse process syndrome. Fourteen days after the operation, EA and AK rats were given electroacupuncture and acupuncture knife treatments, respectively. Fifty-six days after the operation, enzyme-linked immunosorbent assay was used to measure substance P (SP), 5-hydroxytryptamine (5-HT), interleukin-1β (IL-1β), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) in peripheral blood. The tail flick test was used to observe pain threshold. We found that rats with the simulation operation had significantly higher levels of SP, 5-HT, IL-1, IL-10, TNF-α, and TGF-β, while the AK rats had lower levels. In addition, the pain threshold of AK rats was similar to that of control rats. AK pretreatment could alleviate pain through modulating inflammatory response.
PMCID: PMC4269310  PMID: 25544854
21.  Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk 
Nature genetics  2014;46(6):533-542.
Known genetic loci explain only a small proportion of the familial relative risk of colorectal cancer (CRC). We conducted the largest genome-wide association study in East Asians with 14,963 CRC cases and 31,945 controls and identified six new loci associated with CRC risk (P = 3.42 × 10−8 to 9.22 × 10−21) at 10q22.3, 10q25.2, 11q12.2, 12p13.31, 17p13.3 and 19q13.2. Two of these loci map to genes (TCF7L2 and TGFB1) with established roles in colorectal tumorigenesis. Four other loci are located in or near genes involved in transcription regulation (ZMIZ1), genome maintenance (FEN1), fatty acid metabolism (FADS1 and FADS2), cancer cell motility and metastasis (CD9) and cell growth and differentiation (NXN). We also found suggestive evidence for three additional loci associated with CRC risk near genome-wide significance at 8q24.11, 10q21.1 and 10q24.2. Furthermore, we replicated 22 previously reported CRC loci. Our study provides insights into the genetic basis of CRC and suggests new biological pathways.
PMCID: PMC4068797  PMID: 24836286
22.  Adrenergic regulation of the rapid component of delayed rectifier K+ currents in guinea pig cardiomyocytes 
Journal of Thoracic Disease  2014;6(12):1778-1784.
Guinea pig ventricular cardiomyocytes display the rapid component of the delayed rectifier potassium current (Ikr) that contributes to ventricular repolarization and promotes stress-induced arrhythmias. Adrenergic stimulation favors ventricular arrhythmogenesis but its effects on Ikr are poorly understood.
Adrenergic modulation of Ikr was studied in isolated guinea pig ventricular cardiomyocytes using whole-cell patch clamping.
We found that the Ikr amplitude was reduced to 0.66±0.02 and 0.62±0.03 in response to 0.1 µM phenylephrine (PE), an α1AR agonist, and 10 µM isoproterenol (ISO), a βAR agonist, respectively. The effect of PE can be blocked by the selective α1A-adrenoceptor antagonist 5-methylurapidil, but not by the α1B-adrenoceptor antagonist chloroethylclonidine or α1D-adrenoceptor antagonist BMY7378. Additionally, the effect of ISO can be blocked by the β1-selective AR antagonist CGP-20712A, but not by the β2-selective AR antagonist ICI-118551. Although PE and ISO was continuously added to cells, ISO did not decrease the current to a greater extent when cells were first given PE. In addition, PE’s effect on Ikr was suppressed by β1AR stimulation.
Ikr can by regulated by both the α1 and β ARs system, and that in addition to direct regulation by each receptor system, crosstalk may exist between the two systems.
PMCID: PMC4283310  PMID: 25589973
Adrenergic receptors (ARs); potassium current; crosstalk; cardiomyocytes
23.  Development assistance for health given to Nepal by China and India: a comparative study 
Globalization and Health  2014;10(1):76.
Development assistance for health (DAH) promotes health development in low and middle income countries. China and India, as emerging donors, have scaled-up their DAH programs during the recent years. Nepal, as a neighboring country to China and India, has witnessed the history and development of China’s and India’s DAH.
This research uses a literature review and in-depth individual interviewing to compare the history and forms of DAH given from China and India to Nepal.
During 60-years of DAH to Nepal, China and India have gradually increased the scale and forms of DAH, and both focus on dispatching medical teams or faculty, building health facilities and gifting medicines and equipment. However, the inclusiveness of Nepalese culture, diplomatic interests, and Nepal’s cultural, linguistic and geographical closeness to India make the DAH of India different from that of China. India’s DAH also includes support to grass roots NGOs and public health interventions.
China’s and India’s insistence on a recipient-driven mechanism keeps the aid programs aligned with Nepal’s health development plan and respects Nepal’s “ownership”. China can learn from India to start the development assistance for health related NGOs and public health intervention.
PMCID: PMC4255654  PMID: 25406661
China; India; Nepal; Development Assistance for Health
24.  Impact of losartan and angiotensin II on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat vascular smooth muscle cells 
Molecular Medicine Reports  2014;11(3):1587-1594.
The present study aimed to investigate the impact of losartan and angiotensin II (AngII) on the expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1), secreted by rat vascular smooth muscle cells (VSMCs). Rat VSMCs were isolated and cultured in different concentrations of AngII and losartan for 24 h and western blot analysis and quantitative polymerase chain reaction were performed to observe the subsequent impact on the gene and protein expression of MMP-9 and TIMP-1. AngII was shown to promote the protein and gene expression of MMP-9 in VSMCs in a concentration-dependent manner. No effect was observed on the expression of TIMP-1, therefore, an increase in the MMP-9/TIMP-1 ratio was observed. Losartan was shown to be able to inhibit MMP-9 protein and gene expression in a concentration-dependent manner, whilst promoting an increase in TIMP-1 expression, thus decreasing the ratio of MMP-9/TIMP-1. The combined action of losartan and AngII resulted in the same directional changes in MMP-9 and TIMP-1 expression as observed for losartan alone. The comparison of AngII, losartan and the combinatory effect on the expression of MMP-9 and TIMP-1 in VSMCs indicated that losartan inhibited the effects of AngII, therefore reducing the MMP-9/TIMP-1 ratio, which may contribute to the molecular mechanism of losartan in preventing atherosclerosis. In atherosclerosis, the development of the extracellular matrix of plaque is closely correlated with the evolution of AS. The balance between MMPs and TIMPs is important in maintaining the dynamic equilibrium between the ECM, and the renin-angiotensin-aldosterone system, which is involved in the pathologenesis of AS, and in which AngII has a central role.
PMCID: PMC4270314  PMID: 25405958
losartan; angiotensin II; vascular smooth muscle cells; matrix metalloproteinase-9; tissue inhibitor of metalloproteinase-1
25.  Mental health status and work environment among workers in small- and medium-sized enterprises in Guangdong, China-a cross-sectional survey 
BMC Public Health  2014;14(1):1162.
Small- and medium-sized enterprises (SMEs) generate nearly 80% of the jobs in China, but the dangerous work environment often found in these enterprises poses a major concern for public health. Psychosocial pressure and mental health problems among the workers are also common in SMEs. However, mental health of workers in SMEs is largely neglected in occupational health research and practice in China. The purpose of this study is to assess mental health of the workers and to explore the associations between physical and psychosocial work environment and workers’ mental health in SMEs in South China.
Data were collected in 2012 through a cross-sectional survey among 1200 workers working in small- and medium-sized enterprises (SMEs) in Guangdong, China. Mental health was measured by psychological well-being in the current study. Job Demand-Control-Support (JDCS) model was used as a theoretical framework to examine the psychosocial factors associated with workers’ psychological well-being. Data were analyzed using SPSS 20.0 and analysis was performed using bivariate analyses and multivariate logistic regression.
About three in ten workers (35.3%) in the sample had poor psychological well-being. Those who were men, younger in age, or migrant workers had worse psychological outcome in bivariate analyses. After controlling for individual variables (gender, age, marital status, and household registration), we found that longer weekly work hours (OR = 1.30, 95% CI: 1.13 ~ 1.50), more exposure to hazardous work environment (OR = 1.26, 95% CI: 1.10 ~ 1.44), higher job demands (OR = 1.29, 95% CI: 1.12 ~ 1.49), and lower job autonomy (OR = 0.70, 95% CI: 0.60 ~ 0.81) were significant associated with worse psychological well-being. The results were consistent with predictions of the JDCS model.
The results indicate that the JDCS model is a useful framework in predicting psychological well-being among Chinese workers in SMEs. Future mental health promotion should focus on young migrant male workers as they appear to be most vulnerable in their psychological well-being. Both physical and psychosocial aspects of the work environment should be taken into account in policy making to prevent mental disorder and promote psychological well-being among workers in SMEs.
PMCID: PMC4247769  PMID: 25387579
Chinese workers; Mental health; Psychological well-being; WHO (five) well-being index; Small- and medium-sized enterprises (SMEs); Job demand-control (JDC) model; Job demand-control-support (JDCS) model

Results 1-25 (256)