Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Objective Definition of Rosette Shape Variation Using a Combined Computer Vision and Data Mining Approach 
PLoS ONE  2014;9(5):e96889.
Computer-vision based measurements of phenotypic variation have implications for crop improvement and food security because they are intrinsically objective. It should be possible therefore to use such approaches to select robust genotypes. However, plants are morphologically complex and identification of meaningful traits from automatically acquired image data is not straightforward. Bespoke algorithms can be designed to capture and/or quantitate specific features but this approach is inflexible and is not generally applicable to a wide range of traits. In this paper, we have used industry-standard computer vision techniques to extract a wide range of features from images of genetically diverse Arabidopsis rosettes growing under non-stimulated conditions, and then used statistical analysis to identify those features that provide good discrimination between ecotypes. This analysis indicates that almost all the observed shape variation can be described by 5 principal components. We describe an easily implemented pipeline including image segmentation, feature extraction and statistical analysis. This pipeline provides a cost-effective and inherently scalable method to parameterise and analyse variation in rosette shape. The acquisition of images does not require any specialised equipment and the computer routines for image processing and data analysis have been implemented using open source software. Source code for data analysis is written using the R package. The equations to calculate image descriptors have been also provided.
PMCID: PMC4013065  PMID: 24804972
2.  Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B 
Journal of Experimental Botany  2014;65(10):2757-2766.
The extent of endoreduplication in leaf growth is group- or even species-specific, and its adaptive role is still unclear. A survey of Arabidopsis accessions for variation at the level of endopolyploidy, cell number, and cell size in leaves revealed extensive genetic variation in endopolyploidy level. High endopolyploidy is associated with increased leaf size, both in natural and in genetically unstructured (mapping) populations. The underlying genes were identified as quantitative trait loci that control endopolyploidy in nature by modulating the progression of successive endocycles during organ development. This complex genetic architecture indicates an adaptive mechanism that allows differential organ growth over a broad geographic range and under stressful environmental conditions. UV-B radiation was identified as a significant positive climatic predictor for high endopolyploidy. Arabidopsis accessions carrying the increasing alleles for endopolyploidy also have enhanced tolerance to UV-B radiation. UV-absorbing secondary metabolites provide an additional protective strategy in accessions that display low endopolyploidy. Taken together, these results demonstrate that high constitutive endopolyploidy is a significant predictor for organ size in natural populations and is likely to contribute to sustaining plant growth under high incident UV radiation. Endopolyploidy may therefore form part of the range of UV-B tolerance mechanisms that exist in natural populations.
PMCID: PMC4047990  PMID: 24470468
Abiotic stress; Arabidopsis; endopolyploidy; natural variation; organ development; UV-B.
3.  Gene dosage effect of WEE1 on growth and morphogenesis from arabidopsis hypocotyl explants 
Annals of Botany  2012;110(8):1631-1639.
Background and Aims
How plant cell-cycle genes interface with development is unclear. Preliminary evidence from our laboratory suggested that over-expression of the cell cycle checkpoint gene, WEE1, repressed growth and development. Here the hypothesis is tested that the level of WEE1 has a dosage effect on growth and development in Arabidospis thaliana. To do this, a comparison was made of the development of gain- and loss-of-function WEE1 arabidopsis lines both in vivo and in vitro.
Hypocotyl explants from an over-expressing Arath;WEE1 line (WEE1oe), two T-DNA insertion lines (wee1-1 and wee1-4) and wild type (WT) were cultured on two-way combinations of kinetin and naphthyl acetic acid. Root growth and meristematic cell size were also examined.
Key Results
Quantitative data indicated a repressive effect in WEE1oe and a significant increase in morphogenetic capacity in the two T-DNA insertion lines compared with WT. Compared with WT, WEE1oe seedlings exhibited a slower cell-doubling time in the root apical meristem and a shortened primary root, with fewer laterals, whereas there were no consistent differences in the insertion lines compared with WT. However, significantly fewer adventitious roots were recorded for WEE1oe and significantly more for the insertion mutant wee1-1. Compared with WT there was a significant increase in meristem cell size in WEE1oe for all three ground tissues but for wee1-1 only cortical cell size was reduced.
There is a gene dosage effect of WEE1 on morphogenesis from hypocotyls both in vitro and in vivo.
PMCID: PMC3503502  PMID: 23065633
Arabidopsis thaliana; cell cycle; development; growth; hypocotyl; tissue culture; WEE1
4.  Cyclin dependent protein kinases and stress responses in plants 
Plant Signaling & Behavior  2011;6(2):204-209.
Plants have to adjust, grow and establish themselves in various changing environmental conditions. Additionally, the sessile life-style of plants requires the development of response mechanisms for their adaptation in such environmental cues. Under biotic and abiotic stress, plant growth is negatively affected mainly as a result of cell cycle inhibition. The perception of stress involves the activation of signaling cascades that result in a prolonged S-phase and delayed entry into mitosis. Although the molecular interactions that link the cell cycle machinery to perception of stress are not fully understood, recent studies indicated the involvement of Cyclin Dependent Kinases (CDKs) in the plant response machinery. CDKs are core cell cycle regulators but their activity has been implicated in additional diverse cellular processes. Here we review the impact of different types of abiotic stress on plant cell cycle progression and CDK activity, and discuss the contribution of CDK function in the signaling control of stress tolerance.
PMCID: PMC3121979  PMID: 21512322
abiotic stress; cell cycle; CDK; cyclin
5.  Arabidopsis T-DNA insertional lines for CDC25 are hypersensitive to hydroxyurea but not to zeocin or salt stress 
Annals of Botany  2010;107(7):1183-1192.
Background and Aims
In yeasts and animals, cyclin-dependent kinases are key regulators of cell cycle progression and are negatively and positively regulated by WEE1 kinase and CDC25 phosphatase, respectively. In higher plants a full-length orthologue of CDC25 has not been isolated but a shorter gene with homology only to the C-terminal catalytic domain is present. The Arabidopis thaliana;CDC25 can act as a phosphatase in vitro. Since in arabidopsis, WEE1 plays an important role in the DNA damage/DNA replication checkpoints, the role of Arath;CDC25 in conditions that induce these checkpoints or induce abiotic stress was tested.
arath;cdc25 T-DNA insertion lines, Arath;CDC25 over-expressing lines and wild type were challenged with hydroxyurea (HU) and zeocin, substances that stall DNA replication and damage DNA, respectively, together with an abiotic stressor, NaCl. A molecular and phenotypic assessment was made of all genotypes
Key Results
There was a null phenotypic response to perturbation of Arath;CDC25 expression under control conditions. However, compared with wild type, the arath;cdc25 T-DNA insertion lines were hypersensitive to HU, whereas the Arath;CDC25 over-expressing lines were relatively insensitive. In particular, the over-expressing lines consistently outgrew the T-DNA insertion lines and wild type when challenged with HU. All genotypes were equally sensitive to zeocin and NaCl.
Arath;CDC25 plays a role in overcoming stress imposed by HU, an agent know to induce the DNA replication checkpoint in arabidopsis. However, it could not enhance tolerance to either a zeocin treatment, known to induce DNA damage, or salinity stress.
PMCID: PMC3091795  PMID: 20647223
Arabidopsis thaliana; cell-cycle checkpoints; hydroxyurea; root growth; NaCl; zeocin
6.  Interaction of a 14-3-3 protein with the plant microtubule-associated protein EDE1 
Annals of Botany  2011;107(7):1103-1109.
Background and Aims
The cell cycle-regulated protein ENDOSPERM DEFECTIVE 1 (EDE1) is a novel plant microtubule-associated protein essential for plant cell division and for microtubule organization in endosperm. EDE1 is only present on microtubules at mitosis and its expression is highly cell cycle regulated both at the protein and the transcript levels.
To search for EDE1-interacting proteins, a yeast two-hybrid screen was used in which EDE1 was fused with GAL4 DNA binding domain and expressed in a yeast strain that was then mated with a strain carrying a cDNA library fused to the GAL4 transactivation domain. Candidate interacting proteins were identified and confirmed in vitro.
Key Results
14-3-3 upsilon was isolated several times from the library screen. In in vitro tests, it also interacted with EDE1: 14-3-3 upsilon most strongly associates with EDE1 in its free form, but also weakly when EDE1 is bound to microtubules. This study shows that EDE1 is a cyclin-dependent kinase substrate but that phosphorylation is not required for interaction with 14-3-3 upsilon.
The results suggest that 14-3-3 proteins may play a role in cytoskeletal organization of plant cells. The potential role of this interaction in the dynamics of EDE1 during the cell cycle is discussed.
PMCID: PMC3091805  PMID: 21558460
14-3-3; microtubules; EDE1; cell cycle; cytoskeleton
7.  The auxin signalling network translates dynamic input into robust patterning at the shoot apex 
We provide a comprehensive expression map of the different genes (TIR1/AFBs, ARFs and Aux/IAAs) involved in the signalling pathway regulating gene transcription in response to auxin in the shoot apical meristem (SAM).We demonstrate a relatively simple structure of this pathway using a high-throughput yeast two-hybrid approach to obtain the Aux/IAA-ARF full interactome.The topology of the signalling network was used to construct a model for auxin signalling and to predict a role for the spatial regulation of auxin signalling in patterning of the SAM.We used a new sensor to monitor the input in the auxin signalling pathway and to confirm the model prediction, thus demonstrating that auxin signalling is essential to create robust patterns at the SAM.
The plant hormone auxin is a key morphogenetic signal involved in the control of cell identity throughout development. A striking example of auxin action is at the shoot apical meristem (SAM), a population of stem cells generating the aerial parts of the plant. Organ positioning and patterning depends on local accumulations of auxin in the SAM, generated by polar transport of auxin (Vernoux et al, 2010). However, it is still unclear how auxin is distributed at cell resolution in tissues and how the hormone is sensed in space and time during development. A complex ensemble of 29 Aux/IAAs and 23 ARFs is central to the regulation of gene transcription in response to auxin (for review, see Leyser, 2006; Guilfoyle and Hagen, 2007; Chapman and Estelle, 2009). Protein–protein interactions govern the properties of this transduction pathway (Del Bianco and Kepinski, 2011). Limited interaction studies suggest that, in the absence of auxin, the Aux/IAA repressors form heterodimers with the ARF transcription factors, preventing them from regulating target genes. In the presence of auxin, the Aux/IAA proteins are targeted to the proteasome by an SCF E3 ubiquitin ligase complex (Chapman and Estelle, 2009; Leyser, 2006). In this process, auxin promotes the interaction between Aux/IAA proteins and the TIR1 F-box of the SCF complex (or its AFB homologues) that acts as an auxin co-receptor (Dharmasiri et al, 2005a, 2005b; Kepinski and Leyser, 2005; Tan et al, 2007). The auxin-induced degradation of Aux/IAAs would then release ARFs to regulate transcription of their target genes. This includes activation of most of the Aux/IAA genes themselves, thus establishing a negative feedback loop (Guilfoyle and Hagen, 2007). Although this general scenario provides a framework for understanding gene regulation by auxin, the underlying protein–protein network remains to be fully characterized.
In this paper, we combined experimental and theoretical analyses to understand how this pathway contributes to sensing auxin in space and time (Figure 1). We first analysed the expression patterns of the ARFs, Aux/IAAs and TIR1/AFBs genes in the SAM. Our results demonstrate a general tendency for most of the 25 ARFs and Aux/IAAs detected in the SAM: a differential expression with low levels at the centre of the meristem (where the stem cells are located) and high levels at the periphery of the meristem (where organ initiation takes place). We also observed a similar differential expression for TIR1/AFB co-receptors. To understand the functional significance of the distribution of ARFs and Aux/IAAs in the SAM, we next investigated the global structure of the Aux/IAA-ARF network using a high-throughput yeast two-hybrid approach and uncover a rather simple topology that relies on three basic generic features: (i) Aux/IAA proteins interact with themselves, (ii) Aux/IAA proteins interact with ARF activators and (iii) ARF repressors have no or very limited interactions with other proteins in the network.
The results of our interaction analysis suggest a model for the Aux/IAA-ARF signalling pathway in the SAM, where transcriptional activation by ARF activators would be negatively regulated by two independent systems, one involving the ARF repressors, the other the Aux/IAAs. The presence of auxin would remove the inhibitory action of Aux/IAAs, but leave the ARF repressors to compete with ARF activators for promoter-binding sites. To explore the regulatory properties of this signalling network, we developed a mathematical model to describe the transcriptional output as a function of the signalling input that is the combinatorial effect of auxin concentration and of its perception. We then used the model and a simplified view of the meristem (where the same population of Aux/IAAs and ARFs exhibit a low expression at the centre and a high expression in the peripheral zone) for investigating the role of auxin signalling in SAM function. We show that in the model, for a given ARF activator-to-repressor ratio, the gene induction capacity increases with the absolute levels of ARF proteins. We thus predict that the differential expression of the ARFs generates differences in auxin sensitivities between the centre (low sensitivity) and the periphery (high sensitivity), and that the expression of TIR1/AFB participates to this regulation (prediction 1). We also use the model to analyse the transcriptional response to rapidly changing auxin concentrations. By simulating situations equivalent either to the centre or the periphery of our simplified representation of the SAM, we predict that the signalling pathway buffers its response to the auxin input via the balance between ARF activators and repressors, in turn generated by their differential spatial distributions (prediction 2).
To test the predictions from the model experimentally, we needed to assess both the input (auxin level and/or perception) and the output (target gene induction) of the signalling cascade. For measuring the transcriptional output, the widely used DR5 reporter is perfectly adapted (Figure 5) (Ulmasov et al, 1997; Sabatini et al, 1999; Benkova et al, 2003; Heisler et al, 2005). For assaying pathway input, we designed DII-VENUS, a novel auxin signalling sensor that comprises a constitutively expressed fusion of the auxin-binding domain (termed domain II or DII) (Dreher et al, 2006; Tan et al, 2007) of an IAA to a fast-maturating variant of YFP, VENUS (Figure 5). The degradation patterns from DII-VENUS indicate a high auxin signalling input both in flower primordia and at the centre of the SAM. This is in contrast to the organ-specific expression pattern of DR5::VENUS (Figure 5). These results indicate that the signalling pathway limits gene activation in response to auxin at the meristem centre and confirm the differential sensitivity to auxin between the centre and the periphery (prediction 1). We further confirmed the buffering capacities of the signalling pathway (prediction 2) by carrying out live imaging experiments to monitor DII-VENUS and DR5::VENUS expression in real time (Figure 5). This analysis reveals the presence of important temporal variations of DII-VENUS fluorescence, while DR5::VENUS does not show such global variations. Our approach thus provides evidence that the Aux/IAA-ARF pathway has a key role in patterning in the SAM, alongside the auxin transport system. Our results illustrate how the tight spatio-temporal regulation of both the distribution of a morphogenetic signal and the activity of the downstream signalling pathway provides robustness to a dynamic developmental process.
A comprehensive expression and interaction map of auxin signalling factors in the Arabidopsis shoot apical meristem is constructed and used to derive a mathematical model of auxin signalling, from which key predictions are experimentally confirmed.
The plant hormone auxin is thought to provide positional information for patterning during development. It is still unclear, however, precisely how auxin is distributed across tissues and how the hormone is sensed in space and time. The control of gene expression in response to auxin involves a complex network of over 50 potentially interacting transcriptional activators and repressors, the auxin response factors (ARFs) and Aux/IAAs. Here, we perform a large-scale analysis of the Aux/IAA-ARF pathway in the shoot apex of Arabidopsis, where dynamic auxin-based patterning controls organogenesis. A comprehensive expression map and full interactome uncovered an unexpectedly simple distribution and structure of this pathway in the shoot apex. A mathematical model of the Aux/IAA-ARF network predicted a strong buffering capacity along with spatial differences in auxin sensitivity. We then tested and confirmed these predictions using a novel auxin signalling sensor that reports input into the signalling pathway, in conjunction with the published DR5 transcriptional output reporter. Our results provide evidence that the auxin signalling network is essential to create robust patterns at the shoot apex.
PMCID: PMC3167386  PMID: 21734647
auxin; biosensor; live imaging; ODE; signalling
8.  Endosperm development in Brachypodium distachyon 
Journal of Experimental Botany  2010;62(2):735-748.
Grain development and its evolution in grasses remains poorly understood, despite cereals being our most important source of food. The grain, for which many grass species have been domesticated, is a single-seeded fruit with prominent and persistent endosperm. Brachypodium distachyon, a small wild grass, is being posited as a new model system for the temperate small grain cereals, but little is known about its endosperm development and how this compares with that of the domesticated cereals. A cellular and molecular map of domains within the developing Brachypodium endosperm is constructed. This provides the first detailed description of grain development in Brachypodium for the reference strain, Bd21, that will be useful for future genetic and comparative studies. Development of Brachypodium grains is compared with that of wheat. Notably, the aleurone is not regionally differentiated as in wheat, suggesting that the modified aleurone region may be a feature of only a subset of cereals. Also, the central endosperm and the nucellar epidermis contain unusually prominent cell walls that may act as a storage material. The composition of these cell walls is more closely related to those of barley and oats than to those of wheat. Therefore, although endosperm development is broadly similar to that of temperate small grain cereals, there are significant differences that may reflect its phylogenetic position between the Triticeae and rice.
PMCID: PMC3003816  PMID: 21071680
Brachypodium distachyon; development; endosperm; evolution; gene expression; grain structure
9.  A streamlined method for systematic, high resolution in situ analysis of mRNA distribution in plants 
Plant Methods  2005;1:8.
In situ hybridisation can provide cellular, and in some cases sub-cellular, resolution of mRNA levels within multicellular organisms and is widely used to provide spatial and temporal information on gene expression. However, standard protocols are complex and laborious to implement, restricting analysis to one or a few genes at any one time. Whole-mount and reverse transcriptase-PCR (RT-PCR) based protocols increase throughput, but can compromise both specificity and resolution. With the advent of genome-wide analysis of gene expression, there is an urgent need to develop high-throughput in situ methods that also provide high resolution.
Here we describe the development of a method for performing high-throughput in situ hybridisations that retains both the high resolution and the specificity of the best manual versions. This refined semi-automated protocol has the potential for determining the spatial and temporal expression patterns of hundreds of genes in parallel on a variety of tissues. We show how tissue sections can be organized on microscope slides in a manner that allows the screening of multiple probes on each slide. Slide handling, hybridisation and processing steps have been streamlined providing a capacity of at least 200 probes per week (depending on the tissue type). The technique can be applied easily to different species and tissue types, and we illustrate this with wheat seed and Arabidopsis floral meristems, siliques and seedlings.
The approach has the high specificity and high resolution of previous in situ methods while allowing for the analysis of several genes expression patterns in parallel. This method has the potential to provide an analysis of gene expression patterns at the genome level.
PMCID: PMC1280931  PMID: 16270906
10.  CHPA, a Cysteine- and Histidine-Rich-Domain-Containing Protein, Contributes to Maintenance of the Diploid State in Aspergillus nidulans 
Eukaryotic Cell  2004;3(4):984-991.
The alternation of eukaryotic life cycles between haploid and diploid phases is crucial for maintaining genetic diversity. In some organisms, the growth and development of haploid and diploid phases are nearly identical, and one might suppose that all genes required for one phase are likely to be critical for the other phase. Here, we show that targeted disruption of the chpA (cysteine- and histidine-rich-domain- [CHORD]-containing protein A) gene in haploid Aspergillus nidulans strains gives rise to chpA knockout haploids and heterozygous diploids but no chpA knockout diploids. A. nidulans chpA heterozygous diploids showed impaired conidiophore development and reduced conidiation. Deletion of chpA from diploid A. nidulans resulted in genome instability and reversion to a haploid state. Thus, our data suggest a vital role for chpA in maintenance of the diploid phase in A. nidulans. Furthermore, the human chpA homolog, Chp-1, was able to complement haploinsufficiency in A. nidulans chpA heterozygotes, suggesting that the function of CHORD-containing proteins is highly conserved in eukaryotes.
PMCID: PMC500894  PMID: 15302831

Results 1-10 (10)