Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  High-resolution proxies for wood density variations in Terminalia superba 
Annals of Botany  2010;107(2):293-302.
Background and Aims
Density is a crucial variable in forest and wood science and is evaluated by a multitude of methods. Direct gravimetric methods are mostly destructive and time-consuming. Therefore, faster and semi- to non-destructive indirect methods have been developed.
Profiles of wood density variations with a resolution of approx. 50 µm were derived from one-dimensional resistance drillings, two-dimensional neutron scans, and three-dimensional neutron and X-ray scans. All methods were applied on Terminalia superba Engl. & Diels, an African pioneer species which sometimes exhibits a brown heart (limba noir).
Key Results
The use of X-ray tomography combined with a reference material permitted direct estimates of wood density. These X-ray-derived densities overestimated gravimetrically determined densities non-significantly and showed high correlation (linear regression, R2 = 0·995). When comparing X-ray densities with the attenuation coefficients of neutron scans and the amplitude of drilling resistance, a significant linear relation was found with the neutron attenuation coefficient (R2 = 0·986) yet a weak relation with drilling resistance (R2 = 0·243). When density patterns are compared, all three methods are capable of revealing the same trends. Differences are mainly due to the orientation of tree rings and the different characteristics of the indirect methods.
High-resolution X-ray computed tomography is a promising technique for research on wood cores and will be explored further on other temperate and tropical species. Further study on limba noir is necessary to reveal the causes of density variations and to determine how resistance drillings can be further refined.
PMCID: PMC3025726  PMID: 21131386
High-resolution X-ray tomography; neutron imaging; drilling resistance; Terminalia superba; wood density
2.  Mechanical stress, fracture risk and beak evolution in Darwin's ground finches (Geospiza) 
Darwin's finches have radiated from a common ancestor into 14 descendent species, each specializing on distinct food resources and evolving divergent beak forms. Beak morphology in the ground finches (Geospiza) has been shown to evolve via natural selection in response to variation in food type, food availability and interspecific competition for food. From a mechanical perspective, however, beak size and shape are only indirectly related to birds' abilities to crack seeds, and beak form is hypothesized to evolve mainly under selection for fracture avoidance. Here, we test the fracture-avoidance hypothesis using finite-element modelling. We find that across species, mechanical loading is similar and approaches reported values of bone strength, thus suggesting pervasive selection on fracture avoidance. Additionally, deep and wide beaks are better suited for dissipating stress than are more elongate beaks when scaled to common sizes and loadings. Our results illustrate that deep and wide beaks in ground finches enable reduction of areas with high stress and peak stress magnitudes, allowing birds to crack hard seeds while limiting the risk of beak failure. These results may explain strong selection on beak depth and width in natural populations of Darwin's finches.
PMCID: PMC2830229  PMID: 20194171
Darwin's finches; finite-element modelling; bite force; beak shape

Results 1-2 (2)