Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters 
Annals of Botany  2011;108(5):821-833.
Background and Aims
Brachypodium distachyon is a temperate grass with a small stature, rapid life cycle and completely sequenced genome that has great promise as a model system to study grass-specific traits for crop improvement. Under iron (Fe)-deficient conditions, grasses synthesize and secrete Fe(III)-chelating agents called phytosiderophores (PS). In Zea mays, Yellow Stripe1 (ZmYS1) is the transporter responsible for the uptake of Fe(III)–PS complexes from the soil. Some members of the family of related proteins called Yellow Stripe-Like (YSL) have roles in internal Fe translocation of plants, while the function of other members remains uninvestigated. The aim of this study is to establish brachypodium as a model system to study Fe homeostasis in grasses, identify YSL proteins in brachypodium and maize, and analyse their expression profiles in brachypodium in response to Fe deficiency.
The YSL family of proteins in brachypodium and maize were identified based on sequence similarity to ZmYS1. Expression patterns of the brachypodium YSL genes (BdYSL genes) were determined by quantitative RT–PCR under Fe-deficient and Fe-sufficient conditions. The types of PS secreted, and secretion pattern of PS in brachypodium were analysed by high-performance liquid chromatography.
Key Results
Eighteen YSL family members in maize and 19 members in brachypodium were identified. Phylogenetic analysis revealed that some YSLs group into a grass-specific clade. The Fe status of the plant can regulate expression of brachypodium YSL genes in both shoots and roots. 3-Hydroxy-2′-deoxymugineic acid (HDMA) is the dominant type of PS secreted by brachypodium, and its secretion is diurnally regulated.
PS secretion by brachypodium parallels that of related crop species such as barley and wheat. A single grass species-specific YSL clade is present, and expression of the BdYSL members of this clade could not be detected in shoots or roots, suggesting grass-specific functions in reproductive tissues. Finally, the Fe-responsive expression profiles of several YSLs suggest roles in Fe homeostasis.
PMCID: PMC3177677  PMID: 21831857
Brachypodium distachyon; Zea mays; iron homeostasis; phytosiderophore; nicotianamine; Yellow Stripe-Like; YSL; YS1
2.  The MAR1 transporter is an opportunistic entry point for antibiotics 
Plant Signaling & Behavior  2010;5(1):49-52.
The vast quantities of antibiotics used in modern agriculture contaminate the environment and threaten human health. Recent studies have shown that crop plants grown in soil fertilized with manure from antibiotic-treated animals can accumulate antibiotic within the plant body, thus making them an additional antibiotic exposure route for consumers. Until recently, mechanisms of antibiotic entry and subcellular partitioning within plant cells were virtually unknown. We have uncovered and characterized a transporter gene in Arabidopsis thaliana, MAR1, which appears to control antibiotic entry into the chloroplast. Antibiotic resistance via MAR1 is specific to the aminoglycoside class, and is conferred by loss-of-function mutations, which is rather unusual, since most transporter-based antibiotic resistance is conferred by overexpression or gain-of-function mutations in efflux pumps with poor substrate specificity. Since MAR1 overexpression lines exhibit various iron starvation phenotypes, we propose that MAR1 transports an iron chelation molecule that is mimicked specifically by aminoglycoside antibiotics, and this facilitates their entry into the chloroplast. Knowledge about MAR1 enhances our understanding of how antibiotics might enter the plant cell, which may aid in the production of crop plants that are incapable of antibiotic accumulation, as well as further the development of new plant-based antibiotic resistance markers.
PMCID: PMC2835957  PMID: 20592808
antibiotic; contamination; transport; import; chloroplast; membrane; iron; chelation; nicotianamine

Results 1-2 (2)