Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Geographical differentiation in floral traits across the distribution range of the Patagonian oil-secreting Calceolaria polyrhiza: do pollinators matter? 
Annals of Botany  2013;113(2):251-266.
Background and Aims
The underlying evolutionary processes of pollinator-driven floral diversification are still poorly understood. According to the Grant–Stebbins model speciation begins with adaptive local differentiation in the response to spatial heterogeneity in pollinators. Although this crucial process links the micro- and macroevolution of floral adaptation, it has received little attention. In this study geographical phenotypic variation was investigated in Patagonian Calceolaria polyrhiza and its pollinators, two oil-collecting bee species that differ in body size and geographical distribution.
Patterns of phenotypic variation were examined together with their relationships with pollinators and abiotic factors. Six floral and seven vegetative traits were measured in 45 populations distributed across the entire species range. Climatic and edaphic parameters were determined for 25 selected sites, 2–16 bees per site of the most frequent pollinator species were captured, and a critical flower–bee mechanical fitting trait involved in effective pollination was measured. Geographical patterns of phenotypic and environmental variation were examined using uni- and multivariate analyses. Decoupled geographical variation between corolla area and floral traits related to the mechanical fit of pollinators was explored using a Mantel test.
Key Results
The body length of pollinators and the floral traits related to mechanical fit were strongly correlated with each other. Geographical variation of the mechanical-fit-related traits was decoupled from variation in corolla size; the latter had a geographical pattern consistent with that of the vegetative traits and was mainly affected by climatic gradients.
The results are consistent with pollinators playing a key role in shaping floral phenotype at a geographical scale and promoting the differentiation of two floral ecotypes. The relationship between the critical floral-fit-related trait and bee length remained significant even in models that included various environmental variables and an allometric predictor (corolla area). The abiotic environment also has an important role, mainly affecting floral size. Decoupled geographical variation between floral mechanical-fit-related traits and floral size would represent a strategy to maintain plant–pollinator phenotypic matching in this environmentally heterogeneous area.
PMCID: PMC3890392  PMID: 24252281
Abiotic environmental gradients; bee morphology; Calceolaria; floral ecotypes; geographical range; local adaptation; oil-collecting bees; oil-offering flowers; Patagonia; phenotypic covariance; specialized pollination; speciation; vegetative morphology
2.  Flower power: its association with bee power and floral functional morphology in papilionate legumes 
Annals of Botany  2011;108(5):919-931.
Background and Aims
A test was made of the hypothesis that papilionate legume flowers filter pollinators according to their ability to exert strength to open flowers to access rewards. In addition, interactions with pollen vectors were expected to explain the structural complexity of the architecture of these flowers since operative flower strength may be determined by a combination of morphological traits which form part of an intrafloral functional module.
Six papilionate species were studied: Collaea argentina, Desmodium uncinatum, Galactia latisiliqua, Lathyrus odoratus, Spartium junceum and Tipuana tipu. Measurements were made of the strength needed to open keels and the strength that pollinators were capable of exerting. Morphological traits of all petals were also measured to determine which of them could be either mutually correlated or correlated with operative strength and moment of strength and participated in a functional module.
Key Results
It was observed that pollinators were capable in all cases of exerting forces higher and often several times higher than that needed to access floral rewards, and no association could be detected between floral operative strength and strength exerted by the corresponding pollinators. On the other hand, strong and significant correlations were found among morphometric traits and, of these, with operative strength and moment. This was particularly evident among traits of the keel and the wings, presumably involved in the functioning of the floral moveable mechanism.
Though visitors are often many times stronger than the operative strength of the flowers they pollinate, exceptionally weak bees such as Apis mellifera cannot open the strongest flowers. On the other hand, strong correlations among certain petal morphometric traits (particularly between the keel and wings) give support to the idea that an intrafloral module is associated with the functioning of the mechanism of these legume flowers. In addition, the highly significant correlations found across petals support the view of functional phenotypic integration transcending the ontogenetic organization of flower structure.
PMCID: PMC3177674  PMID: 21821623
Fabaceae; legume; papilionate flowers; pollination; biomechanic; filtering mechanism; floral phenotypic integration; bee; strength; functional module
3.  Armament Imbalances: Match and Mismatch in Plant-Pollinator Traits of Highly Specialized Long-Spurred Orchids 
PLoS ONE  2012;7(7):e41878.
Some species of long-spurred orchids achieve pollination by a close association with long-tongued hawkmoths. Among them, several Habenaria species present specialized mechanisms, where pollination success depends on the attachment of pollinaria onto the heads of hawkmoths with very long proboscises. However, in the Neotropical region such moths are less abundant than their shorter-tongued relatives and are also prone to population fluctuations. Both factors may give rise to differences in pollinator-mediated selection on floral traits through time and space.
Methodology/Principal Findings
We characterized hawkmoth assemblages and estimated phenotypic selection gradients on orchid spur lengths in populations of three South American Habenaria species. We examined the match between hawkmoth proboscis and flower spur lengths to determine whether pollinators may act as selective agents on flower morphology. We found significant directional selection on spur length only in Habenaria gourlieana, where most pollinators had proboscises longer than the mean of orchid spur length.
Phenotypic selection is dependent on the mutual match between pollinator and flower morphologies. However, our findings indicate that pollinator-mediated selection may vary through time and space according to local variations in pollinator assemblages.
PMCID: PMC3405039  PMID: 22848645
4.  Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus 
Annals of Botany  2009;103(9):1489-1500.
Background and aims
A South American cactus species, Echinopsis ancistrophora (Cactaceae), with dramatic among-population variation in floral traits is presented.
Eleven populations of E. ancistrophora were studied in their habitats in northern Argentina, and comparisons were made of relevant floral traits such as depth, stigma position, nectar volume and sugar concentration, and anthesis time. Diurnal and nocturnal pollinator assemblages were evaluated for populations with different floral trait combinations.
Key Results
Remarkable geographical variations in floral traits were recorded among the 11 populations throughout the distribution range of E. ancistrophora, with flower lengths ranging from 4·5 to 24·1 cm. Other floral traits associated with pollinator attraction also varied in a population-specific manner, in concert with floral depth. Populations with the shortest flowers showed morning anthesis and those with the longest flowers opened at dusk, whereas those with flowers of intermediate length opened at unusual times (2300–0600 h). Nectar production varied non-linearly with floral length; it was absent to low (population means up to 15 µL) in short- to intermediate-length flowers, but was high (population means up to 170 µL) in the longest tubed flowers. Evidence from light-trapping of moths, pollen carriage on their bodies and moth scale deposition on stigmas suggests that sphingid pollination is prevalent only in the four populations with the longest flowers, in which floral morphological traits and nectar volumes match the classic expectations for the hawkmoth pollination syndrome. All other populations, with flowers 4·5–15 cm long, were pollinated exclusively by solitary bees.
The results suggest incipient differentiation at the population level and local adaptation to either bee or hawkmoth (potentially plus bee) pollination.
PMCID: PMC2701769  PMID: 19342397
Pollination; floral biology; Echinopsis ancistrophora; cactus; Cactaceae; hawkmoth; bee
5.  Variation of Pollinator Assemblages and Pollen Limitation in a Locally Specialized System: The Oil-producing Nierembergia linariifolia (Solanaceae) 
Annals of Botany  2008;102(5):723-734.
Background and Aims
Few studies have examined the dynamics of specialist plant–pollinator interactions at a geographical scale. This knowledge is crucial for a more general evolutionary and ecological understanding of specialized plant–pollinator systems. In the present study, variations in pollinator activity, assemblage composition and pollen limitation were explored in the oil-producing species Nierembergia linariifolia (Solanaceae).
Pollen limitation in fruit and seed production was analysed by supplementary hand pollination in five wild populations. Pollinator activity and identity were recorded while carrying out supplementary pollination to assess the effect of pollinators on the degree of pollen limitation. In two populations, pollen limitation was discriminated into quantitative and qualitative components by comparing supplementation and hand cross-pollination in fruit set and seed set. The effect of flower number per plant on the number of flowers pollinated per visitor per visit to a plant was examined in one of these populations as a possible cause of low-quality pollination by increasing geitonogamy.
Results and Conclusions
Although pollen limitation was evident along time and space, differences in magnitude were detected among populations and years that were greatly explained by pollinator activity, which was significantly different across populations. Floral display size had a significant effect on the visitation rate per flower. Limitation by quality clearly affected one population presumably due to a high proportion of geitonogamous pollen. The great inter-population variation in plant–pollinator interaction (both in pollinator assemblages composition and pollinator activity) and fitness consequences, suggests that this system should be viewed as a mosaic of locally selective processes and locally specialized interactions.
PMCID: PMC2712377  PMID: 18765440
Nierembergia linariifolia; Centris; Chalepogenus; pollen limitation; pollen quality; oil-producing flowers; specialized pollination; floral display; assemblage composition; geographic variation; Solanaceae; tests of equivalence
6.  How to look like a mallow: evidence of floral mimicry between Turneraceae and Malvaceae 
Abundant, many-flowered plants represent reliable and rich food sources for animal pollinators, and may even sustain guilds of specialized pollinators. Contrastingly, rare plants need alternative strategies to ensure pollinators' visitation and faithfulness. Flower mimicry, i.e. the sharing of a similar flower colour and display pattern by different plant species, is a means by which a rare species can exploit a successful model and increase its pollination services. The relationship between two or more rewarding flower mimic species, or Müllerian mimicry, has been proposed as mutualistic, in contrast to the unilaterally beneficial Batesian floral mimicry. In this work, we show that two different geographical colour phenotypes of Turnera sidoides ssp. pinnatifida resemble co-flowering Malvaceae in colour as seen by bees' eyes, and that these pollinators do not distinguish between them when approaching flowers in choice tests. Main pollinators of T. sidoides are bees specialized for collecting pollen in Malvaceae. We demonstrate that the similarity between at least one of the geographical colour phenotypes of T. sidoides and co-flowering Malvaceae is adaptive, since the former obtains more pollination services when growing together with its model than when growing alone. Instead of the convergent evolution pattern attributed to Müllerian mimicry, our data rather suggest an advergent evolution pattern, because only T. sidoides seems to have evolved to be more similar to its malvaceous models.
PMCID: PMC2287375  PMID: 17623635
flower mimicry; Müllerian; mutualism; Malvaceae; pollination; Turneraceae

Results 1-6 (6)