Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Structure-Activity Relationship Study of the Plant-Derived Decapeptide OSIP108 Inhibiting Candida albicans Biofilm Formation 
We performed a structure-activity relationship study of the antibiofilm plant-derived decapeptide OSIP108. Introduction of positively charged amino acids R, H, and K resulted in an up-to-5-fold-increased antibiofilm activity against Candida albicans compared to native OSIP108, whereas replacement of R9 resulted in complete abolishment of its antibiofilm activity. By combining the most promising amino acid substitutions, we found that the double-substituted OSIP108 analogue Q6R/G7K had an 8-fold-increased antibiofilm activity.
PMCID: PMC4135999  PMID: 24913176
2.  Synergistic Activity of the Tyrocidines, Antimicrobial Cyclodecapeptides from Bacillus aneurinolyticus, with Amphotericin B and Caspofungin against Candida albicans Biofilms 
Tyrocidines are cationic cyclodecapeptides from Bacillus aneurinolyticus that are characterized by potent antibacterial and antimalarial activities. In this study, we show that various tyrocidines have significant activity against planktonic Candida albicans in the low-micromolar range. These tyrocidines also prevented C. albicans biofilm formation in vitro. Studies with the membrane-impermeable dye propidium iodide showed that the tyrocidines disrupt the membrane integrity of mature C. albicans biofilm cells. This membrane activity correlated with the permeabilization and rapid lysis of model fungal membranes containing phosphatidylcholine and ergosterol (70:30 ratio) induced by the tyrocidines. The tyrocidines exhibited pronounced synergistic biofilm-eradicating activity in combination with two key antifungal drugs, amphotericin B and caspofungin. Using a Caenorhabditis elegans infection model, we found that tyrocidine A potentiated the activity of caspofungin. Therefore, tyrocidines are promising candidates for further research as antifungal drugs and as agents for combinatorial treatment.
PMCID: PMC4068576  PMID: 24752256
3.  Plant-Derived Decapeptide OSIP108 Interferes with Candida albicans Biofilm Formation without Affecting Cell Viability 
We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation.
PMCID: PMC3993227  PMID: 24566179
4.  Potentiation of Antibiofilm Activity of Amphotericin B by Superoxide Dismutase Inhibition 
This study demonstrates a role for superoxide dismutases (Sods) in governing tolerance of Candida albicans biofilms to amphotericin B (AmB). Coincubation of C. albicans biofilms with AmB and the Sod inhibitors N,N′-diethyldithiocarbamate (DDC) or ammonium tetrathiomolybdate (ATM) resulted in reduced viable biofilm cells and increased intracellular reactive oxygen species levels as compared to incubation of biofilm cells with AmB, DDC, or ATM alone. Hence, Sod inhibitors can be used to potentiate the activity of AmB against C. albicans biofilms.
PMCID: PMC3774027  PMID: 24078861
5.  Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection 
In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.
PMCID: PMC3362084  PMID: 22661981
induced systemic resistance; microarrays; Arabidopsis thaliana; Trichoderma hamatum T382; Botrytis cinerea
6.  The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans 
Molecular Microbiology  2012;84(1):166-180.
The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2,868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2-hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast-to-hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analyzed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24-ceramides in membranes of RsAFP2-treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation.
PMCID: PMC3405362  PMID: 22384976
Candida albicans; plant defensin; mode of action; cell wall; septin; ceramide
7.  The Heat-Induced Molecular Disaggregase Hsp104 of Candida albicans Plays a Role in Biofilm Formation and Pathogenicity in a Worm Infection Model 
Eukaryotic Cell  2012;11(8):1012-1020.
The consequences of deprivation of the molecular chaperone Hsp104 in the fungal pathogen Candida albicans were investigated. Mutants lacking HSP104 became hypersusceptible to lethally high temperatures, similarly to the corresponding mutants of Saccharomyces cerevisiae, whereas normal susceptibility was restored upon reintroduction of the gene. By use of a strain whose only copy of HSP104 is an ectopic gene under the control of a tetracycline-regulated promoter, expression of Hsp104 prior to the administration of heat shock could be demonstrated to be sufficient to confer protection from the subsequent temperature increase. This result points to a key role for Hsp104 in orchestrating the cell response to elevated temperatures. Despite their not showing evident growth or morphological defects, biofilm formation by cells lacking HSP104 proved to be defective in two established in vitro models that use polystyrene and polyurethane as the substrates. Biofilms formed by the wild-type and HSP104-reconstituted strains showed patterns of intertwined hyphae in the extracellular matrix. In contrast, biofilm formed by the hsp104Δ/hsp104Δ mutant showed structural defects and appeared patchy and loose. Decreased virulence of the hsp104Δ/hsp104Δ mutant was observed in the Caenorhabditis elegans infection model, in which high in vivo temperature does not play a role. In agreement with the view that stress responses in fungal pathogens may have evolved to provide niche-specific adaptation to environmental conditions, these results provide an indication of a temperature-independent role for Hsp104 in support of Candida albicans virulence, in addition to its key role in governing thermotolerance.
PMCID: PMC3416063  PMID: 22635920
8.  Phytosphingosine-1-Phosphate Is a Signaling Molecule Involved in Miconazole Resistance in Sessile Candida albicans Cells 
Previous research has shown that 1% to 10% of sessile Candida albicans cells survive treatment with high doses of miconazole (a fungicidal imidazole). In the present study, we investigated the involvement of sphingolipid biosynthetic intermediates in this survival. We observed that the LCB4 gene, coding for the enzyme that catalyzes the phosphorylation of dihydrosphingosine and phytosphingosine, is important in governing the miconazole resistance of sessile Saccharomyces cerevisiae and C. albicans cells. The addition of 10 nM phytosphingosine-1-phosphate (PHS-1-P) drastically reduced the intracellular miconazole concentration and significantly increased the miconazole resistance of a hypersusceptible C. albicans heterozygous LCB4/lcb4 mutant, indicating a protective effect of PHS-1-P against miconazole-induced cell death in sessile cells. At this concentration of PHS-1-P, we did not observe any effect on the fluidity of the cytoplasmic membrane. The protective effect of PHS-1-P was not observed when the efflux pumps were inhibited or when tested in a mutant without functional efflux systems. Also, the addition of PHS-1-P during miconazole treatment increased the expression levels of genes coding for efflux pumps, leading to the hypothesis that PHS-1-P acts as a signaling molecule and enhances the efflux of miconazole in sessile C. albicans cells.
PMCID: PMC3346612  PMID: 22354293
9.  Superoxide Dismutases Are Involved in Candida albicans Biofilm Persistence against Miconazole▿ 
We investigated the cellular mechanisms responsible for the occurrence of miconazole-tolerant persisters in Candida albicans biofilms. Miconazole induced about 30% killing of sessile C. albicans cells at 75 μM. The fraction of miconazole-tolerant persisters, i.e., cells that can survive high doses of miconazole (0.6 to 2.4 mM), in these biofilms was 1 to 2%. Since miconazole induces reactive oxygen species (ROS) in sessile C. albicans cells, we focused on a role for superoxide dismutases (Sods) in persistence and found the expression of Sod-encoding genes in sessile C. albicans cells induced by miconazole compared to the expression levels in untreated sessile C. albicans cells. Moreover, addition of the superoxide dismutase inhibitor N,N′-diethyldithiocarbamate (DDC) to C. albicans biofilms resulted in an 18-fold reduction of the miconazole-tolerant persister fraction and in increased endogenous ROS levels in these cells. Treatment of biofilms of C. albicans clinical isolates with DDC resulted in an 18-fold to more than 200-fold reduction of their miconazole-tolerant persister fraction. To further confirm the important role for Sods in C. albicans biofilm persistence, we used a Δsod4 Δsod5 mutant lacking Sods 4 and 5. Biofilms of the Δsod4 Δsod5 mutant contained at least 3-fold less of the miconazole-tolerant persisters and had increased ROS levels compared to biofilms of the isogenic wild type (WT). In conclusion, the occurrence of miconazole-tolerant persisters in C. albicans biofilms is linked to the ROS-detoxifying activity of Sods. Moreover, Sod inhibitors can be used to potentiate the activity of miconazole against C. albicans biofilms.
PMCID: PMC3165342  PMID: 21746956
10.  Mycorrhizal associations and reproductive isolation in three closely related Orchis species 
Annals of Botany  2010;107(3):347-356.
Background and Aims
The maintenance of species boundaries in sympatric populations of closely related species requires some kind of reproductive isolation that limits gene flow among species and/or prevents the production of viable progeny. Because in orchids mycorrhizal fungi are needed for seed germination and subsequent seedling establishment, orchid–mycorrhizal associations may be involved in acting as a post-mating barrier.
We investigated the strength of post-mating barriers up to the seed germination stage acting between three closely related Orchis species (Orchis anthropophora, O. militaris and O. purpurea) and studied the role of mycorrhizal fungi in hybridization by burying seed packets of pure and hybrid seeds. After retrieval and assessment of seed germination, the fungi associating with protocorms originating from hybrid and pure seeds were determined and compared with those associating with adult individuals using DNA array technology.
Whereas pre-zygotic post-mating barriers were rather weak in most crosses, post-zygotic post-mating barriers were stronger, particularly when O. purpurea was crossed with O. anthropophora. Germination trials in the field showed that seed germination percentages of hybrid seeds were in most cases lower than those originating from pure crosses. In all species pair combinations, total post-mating reproductive isolation was asymmetric. Protocorms associated with a smaller range of fungal symbionts than adult plants, but there was considerable overlap in mycorrhizal associations between protocorms and their respective parents.
Our results suggest that mycorrhizal associations contribute little to reproductive isolation. Pre-mating barriers are probably the main factors determining hybridization rates between the investigated species.
PMCID: PMC3043927  PMID: 21186239
DNA array; gene flow; hybrid zones; mycorrhizal associations; reproductive barriers; seed germination
11.  The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans 
Plant defensins are active against plant and human pathogenic fungi (such as Candida albicans) and baker's yeast. However, they are non-toxic to human cells, providing a possible source for treatment of fungal infections. In this study, we characterized the mode of action of the antifungal plant defensin HsAFP1 from coral bells by screening the Saccharomyces cerevisiae deletion mutant library for mutants with altered HsAFP1 sensitivity and verified the obtained genetic data by biochemical assays in S. cerevisiae and C. albicans. We identified 84 genes, which when deleted conferred at least fourfold hypersensitivity or resistance to HsAFP1. A considerable part of these genes were found to be implicated in mitochondrial functionality. In line, sodium azide, which blocks the respiratory electron transport chain, antagonized HsAFP1 antifungal activity, suggesting that a functional respiratory chain is indispensable for HsAFP1 antifungal action. Since mitochondria are the main source of cellular reactive oxygen species (ROS), we investigated the ROS-inducing nature of HsAFP1. We showed that HsAFP1 treatment of C. albicans resulted in ROS accumulation. As ROS accumulation is one of the phenotypic markers of apoptosis in yeast, we could further demonstrate that HsAFP1 induced apoptosis in C. albicans. These data provide novel mechanistic insights in the mode of action of a plant defensin.
PMCID: PMC3128936  PMID: 21993350
plant defensin; Candida albicans; Saccharomyces cerevisiae; mitochondria; apoptosis; mode of action
12.  Skn1 and Ipt1 negatively regulate autophagy in Saccharomyces cerevisiae 
FEMS microbiology letters  2009;303(2):163-168.
We demonstrated that a yeast deletion mutant in IPT1 and SKN1, encoding proteins involved in biosynthesis of mannosyldiinositolphosphoryl ceramides, is characterized by increased autophagy and DNA fragmentation upon nitrogen starvation as compared to the single deletion mutants or wild type (WT). Apoptotic features were not significantly different between single and double deletion mutants upon nitrogen starvation, pointing to increased autophagy in the double Δipt1 Δskn1 deletion mutant independent of apoptosis. We observed increased basal levels of phytosphingosine in membranes of the double Δipt1 Δskn1 deletion mutant as compared to the single deletion mutants or WT. These data point to a negative regulation of autophagy by both Ipt1 and Skn1 in yeast, with a putative involvement of phytosphingosine in this process.
PMCID: PMC2818745  PMID: 20030721
autophagy; DNA fragmentation; apoptosis; sphingolipid
13.  In Vitro Activity of the Antifungal Plant Defensin RsAFP2 against Candida Isolates and Its In Vivo Efficacy in Prophylactic Murine Models of Candidiasis▿  
Antimicrobial Agents and Chemotherapy  2008;52(12):4522-4525.
We show that RsAFP2, a plant defensin that interacts with fungal glucosylceramides, is active against Candida albicans, inhibits to a lesser extent other Candida species, and is nontoxic to mammalian cells. Moreover, glucosylceramide levels in Candida species correlate with RsAFP2 sensitivity. We found RsAFP2 prophylactically effective against murine candidiasis.
PMCID: PMC2592890  PMID: 18824606

Results 1-13 (13)