Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  12p deletion spectrum syndrome: a new case report reinforces the evidence regarding the potential relationship to autism spectrum disorder and related developmental impairments 
Autism Spectrum Disorders (ASD) now encompass a broad heterogeneous group of people who present in the early developmental years with a wide range of social and communication deficits, which are typically also associated with complex repetitive behaviors and circumscribed interests.
The target goal is to heighten readers’ perception into the trend to personalize the distinct autistic and related developmental conditions encompassing the 12p region.
Case Presentation
This is a case-report of a 4-year-old male who presented the core signs of ASD, which were thought to be related to a rare 12p13.2 deletion.  We further reviewed the literature in order to outline the related developmental conditions in the 12p region.
Aside from this patient reported here, we found an additional number of 43 cases described in the medical literature since 1974, that have been related to deletions in the 12p region. However, to the best of our knowledge, none of the previous had been specifically linked to the 12p13.2 band.
The 12p deletion spectrum is rarely described as part of the selective genotypes thought to be related to ASD. Even inside of a small piece of the puzzle, there might be ample variation in the behavioral and clinical phenotypes of children and adults presenting with this particular genetic profile.
In that regard, the particular 12p13.2 distal deletion presentation is one of the possible genotypes encompassed by the “12p deletion spectrum syndrome”, that might be potentially connected to the diagnosis of ASD and related developmental disorders.
PMCID: PMC5050589  PMID: 27708715
Autism spectrum disorder; 12p13.2 microdeletion; 12p microdeletion spectrum; Developmental delay
2.  Effects of cervical mobilization and exercise on pain, movement and function in subjects with temporomandibular disorders: a single group pre-post test 
Journal of Applied Oral Science  2016;24(3):188-197.
To investigate the effect of a rehabilitation program based on cervical mobilization and exercise on clinical signs and mandibular function in subjects with temporomandibular disorder (TMD). Material and Methods: Single-group pre-post test, with baseline comparison.
Twelve women (22.08±2.23 years) with myofascial pain and mixed TMD according to the Research Diagnostic Criteria for Temporomandibular Disorders.
Outcome measures
Subjects were evaluated three times: twice before (baseline phase) and once after intervention. Self-reported pain, jaw function [according to the Mandibular Functional Impairment Questionnaire (MFIQ)], pain-free maximum mouth opening (MMO), and pressure pain thresholds (PPTs) of both masseter and temporalis muscles were obtained. Baseline and post-intervention differences were investigated, and effect size was estimated through Cohen’s d coefficient.
Jaw function improved 7 points on the scale after the intervention (P=0.019), and self-reported pain was significantly reduced (P=0.009). Pain-free MMO varied from 32.3±8.8 mm to 38±8.8 mm and showed significant improvement (P=0.017) with moderate effect size when compared to the baseline phase. PPT also increased with moderate effect size, and subjects had the baseline values changed from 1.23±0.2 kg/cm2 to 1.4±0.2 kg/cm2 in the left masseter (P=0.03), from 1.31±0.28 kg/cm2 to 1.51±0.2 kg/cm2 in the right masseter (P>0.05), from 1.32±0.2 kg/cm2 to 1.46±0.2 kg/cm2 in the left temporalis (P=0.047), and from 1.4±0.2 kg/cm2 to 1.67±0.3 kg/cm2 in the right temporalis (P=0.06).
The protocol caused significant changes in pain-free MMO, self-reported pain, and functionality of the stomatognathic system in subjects with myofascial TMD, regardless of joint involvement. Even though these differences are statistically significant, their clinical relevance is still questionable.
PMCID: PMC5022215  PMID: 27383698
Temporomandibular joint; Neck; Physical therapy specialty; Stomatognathic system
3.  Lameness Prevalence and Risk Factors in Large Dairy Farms in Upstate New York. Model Development for the Prediction of Claw Horn Disruption Lesions 
PLoS ONE  2016;11(1):e0146718.
The main objectives of this prospective cohort study were a) to describe lameness prevalence at drying off in large high producing New York State herds based on visual locomotion score (VLS) and identify potential cow and herd level risk factors, and b) to develop a model that will predict the probability of a cow developing claw horn disruption lesions (CHDL) in the subsequent lactation using cow level variables collected at drying off and/or available from farm management software. Data were collected from 23 large commercial dairy farms located in upstate New York. A total of 7,687 dry cows, that were less than 265 days in gestation, were enrolled in the study. Farms were visited between May 2012 and March 2013, and cows were assessed for body condition score (BCS) and VLS. Data on the CHDL events recorded by the farm employees were extracted from the Dairy-Comp 305 database, as well as information regarding the studied cows’ health events, milk production, and reproductive records throughout the previous and subsequent lactation period. Univariable analyses and mixed multivariable logistic regression models were used to analyse the data at the cow level. The overall average prevalence of lameness (VLS > 2) at drying off was 14%. Lactation group, previous CHDL, mature equivalent 305-d milk yield (ME305), season, BCS at drying off and sire PTA for strength were all significantly associated with lameness at the drying off (cow-level). Lameness at drying off was associated with CHDL incidence in the subsequent lactation, as well as lactation group, previous CHDL and ME305. These risk factors for CHDL in the subsequent lactation were included in our predictive model and adjusted predicted probabilities for CHDL were calculated for all studied cows. ROC analysis identified an optimum cut-off point for these probabilities and using this cut-off point we could predict CHDL incidence in the subsequent lactation with an overall specificity of 75% and sensitivity of 59%. Using this approach, we would have detected 33% of the studied population as being at risk, eventually identifying 59% of future CHDL cases. Our predictive model could help dairy producers focusing their efforts on CHDL reduction by implementing aggressive preventive measures for high risk cows.
PMCID: PMC4721874  PMID: 26795970
4.  A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants 
Dehydrins belong to a protein family whose expression may be induced or enhanced by developmental process and environmental stresses that lead to cell dehydration. A dehydrin gene named OesDHN was isolated and characterized from oleaster (Olea europaea L. subsp. europaea, var. sylvestris), the wild form of olive. To elucidate the contribution of OesDHN in the development of drought tolerance, its expression levels were investigated in oleaster plants during development and under drought stress condition. The involvement of OesDHN in plant stress response was also evaluated in Arabidopsis transgenic lines, engineered to overexpress this gene, and exposed to a controlled mild osmotic stress. OesDHN expression was found to be modulated during development and induced under mild drought stress in oleaster plants. In addition, the Arabidopsis transgenic plants showed a better tolerance to osmotic stress than wild-type plants. The results demonstrated that OesDHN expression is induced by drought stress and is able to confer osmotic stress tolerance. We suggest a role for OesDHN, as a putative functional marker of plant stress tolerance.
PMCID: PMC4485055  PMID: 26175736
dehydrins; drought tolerance; gene expression; oleaster; green fluorescent protein
5.  Inferior gluteal artery pseudoaneurysm related to intramuscular injection 
•A case of pseudoaneurysm of the IGA following intramuscular injection in the buttock.•Importance careful physical examination in order to avoid misdiagnosis.•Diagnosis and therapy are facilitated by catheter angiography.
Gluteal artery pseudoaneurysms are rare, yet the most common in cases involving the superior gluteal artery. Pseudoaneurysms of the inferior gluteal artery are uncommon and are often related to blunt or penetrating trauma, infections and fractures of the pelvis.
The authors present a case of pseudoaneurysm of the inferior gluteal artery related to an iatrogenic injury due to intramuscular injection of medication, which was treated with selective embolization of the artery during angiography.
The most common manifestation of an inferior gluteal artery pseudoaneurysm is the presence of a painful mass in the buttock that may or may not be associated with neurological symptoms due to compression of the sciatic nerve. Ultrasound with color Doppler and computerized tomography with multi-detectors are useful non-invasive tools for diagnosis. However, both diagnosis and therapy are facilitated by catheter angiography.
This case cautions that although pseudoaneurysms are rare, pseudoaneurysms of the inferior gluteal artery require a high index of suspicion and careful physical examination by the physician in order to avoid misdiagnosis. It also illustrates the usefulness of a minimally invasive modality for treatment of these lesions.
PMCID: PMC4334878  PMID: 25506847
Pseudoaneurysm; Buttocks; Endovascular procedures
6.  Subcutaneous Immunization with Inactivated Bacterial Components and Purified Protein of Escherichia coli, Fusobacterium necrophorum and Trueperella pyogenes Prevents Puerperal Metritis in Holstein Dairy Cows 
PLoS ONE  2014;9(3):e91734.
In this study we evaluate the efficacy of five vaccine formulations containing different combinations of proteins (FimH; leukotoxin, LKT; and pyolysin, PLO) and/or inactivated whole cells (Escherichia coli, Fusobacterium necrophorum, and Trueperella pyogenes) in preventing postpartum uterine diseases. Inactivated whole cells were produced using two genetically distinct strains of each bacterial species (E. coli, F. necrophorum, and T. pyogenes). FimH and PLO subunits were produced using recombinant protein expression, and LKT was recovered from culturing a wild F. necrophorum strain. Three subcutaneous vaccines were formulated: Vaccine 1 was composed of inactivated bacterial whole cells and proteins; Vaccine 2 was composed of proteins only; and Vaccine 3 was composed of inactivated bacterial whole cells only. Two intravaginal vaccines were formulated: Vaccine 4 was composed of inactivated bacterial whole cells and proteins; and Vaccine 5 was composed of PLO and LKT. To evaluate vaccine efficacy, a randomized clinical trial was conducted at a commercial dairy farm; 371 spring heifers were allocated randomly into one of six different treatments groups: control, Vaccine 1, Vaccine 2, Vaccine 3, Vaccine 4 and Vaccine 5. Late pregnant heifers assigned to one of the vaccine groups were each vaccinated twice: at 230 and 260 days of pregnancy. When vaccines were evaluated grouped as subcutaneous and intravaginal, the subcutaneous ones were found to significantly reduce the incidence of puerperal metritis. Additionally, subcutaneous vaccination significantly reduced rectal temperature at 6±1 days in milk. Reproduction was improved for cows that received subcutaneous vaccines. In general, vaccination induced a significant increase in serum IgG titers against all antigens, with subcutaneous vaccination again being more effective. In conclusion, subcutaneous vaccination with inactivated bacterial components and/or protein subunits of E. coli, F. necrophorum and T. pyogenes can prevent puerperal metritis during the first lactation of dairy cows, leading to improved reproduction.
PMCID: PMC3956715  PMID: 24638139
7.  In Vitro Culture Conditions and OeARF and OeH3 Expressions Modulate Adventitious Root Formation from Oleaster (Olea europaea L. subsp. europaea var. sylvestris) Cuttings 
The Scientific World Journal  2014;2014:974086.
Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency.
PMCID: PMC3920661  PMID: 24587768
8.  Is there an association between anxiety/depression and temporomandibular disorders in college students? 
Considering the high incidence of Temporomandibular Disorders (TMD) in the population aged 15-30 years and the fact that students are exposed to stressful psychosocial factors, the purposes of this study were: to verify clinical symptoms and jaw functionality in college students with TMD according to the anxiety/depression (A/D) level and to evaluate the correlation between A/D and functionality, maximum mouth opening (MMO) and pain and muscle activity.
Material and Methods
Nineteen students with TMD diagnosed according to the Research Diagnostic Criteria for Temporomandibular Disorders underwent two assessments during an academic semester. The evaluations were based on questionnaires (MFIQ - Mandibular Function Impairment Questionnaire; HADS - Hospital Anxiety and Depression Scale), clinical measurements (MMO without pain, MMO and assisted MMO; palpation of joint and masticatory muscles), and electromyography. The HADS scores obtained in the two assessments were used to classify all data as either "high" or "low" A/D. Data normality, differences and correlations were tested with the Shapiro-Wilk test, Student's t-test (or the Wilcoxon test), and Spearman test, respectively. The alpha level was set at 0.05.
None of the clinical variables were significantly different when comparing low and high A/D data. In low A/D there was a significant correlation between HADS score and: MFIQ (P=0.005, r=0.61), and MMO without pain (P=0.01, r=-0.55).
Variation in A/D level did not change clinical symptoms or jaw functionality in college students with TMD. Apparently, there is a correlation between TMJ functionality and A/D level, which should be further investigated, taking into account the source of the TMD and including subjects with greater functional limitation.
PMCID: PMC3908760  PMID: 24626244
Physical therapy specialty; Electromyography; Facial pain; Temporomandibular joint; Anxiety; Depression
9.  The peach (Prunus persica L. Batsch) genome harbours 10 KNOX genes, which are differentially expressed in stem development, and the class 1 KNOPE1 regulates elongation and lignification during primary growth 
Journal of Experimental Botany  2012;63(15):5417-5435.
The KNOTTED-like (KNOX) genes encode homeodomain transcription factors and regulate several processes of plant organ development. The peach (Prunus persica L. Batsch) genome was found to contain 10 KNOX members (KNOPE genes); six of them were experimentally located on the Prunus reference map and the class 1 KNOPE1 was found to link to a quantitative trait locus (QTL) for the internode length in the peach×Ferganensis population. All the KNOPE genes were differentially transcribed in the internodes of growing shoots; the KNOPE1 mRNA abundance decreased progressively from primary (elongation) to secondary growth (radial expansion). During primary growth, the KNOPE1 mRNA was localized in the cortex and in the procambium/metaphloem zones, whereas it was undetected in incipient phloem and xylem fibres. KNOPE1 overexpression in the Arabidopsis bp4 loss-of-function background (35S:KNOPE1/bp genotype) restored the rachis length, suggesting, together with the QTL association, a role for KNOPE1 in peach shoot elongation. Several lignin biosynthesis genes were up-regulated in the bp4 internodes but repressed in the 35S:KNOPE1/bp lines similarly to the wild type. Moreover, the lignin deposition pattern of the 35S:KNOPE1/bp and the wild-type internodes were the same. The KNOPE1 protein was found to recognize in vitro one of the typical KNOX DNA-binding sites that recurred in peach and Arabidopsis lignin genes. KNOPE1 expression was inversely correlated with that of lignin genes and lignin deposition along the peach shoot stems and was down-regulated in lignifying vascular tissues. These data strongly support that KNOPE1 prevents cell lignification by repressing lignin genes during peach stem primary growth.
PMCID: PMC3444263  PMID: 22888130
KNOPE1; KNOX transcription factors; peach; stem elongation and lignification
10.  Differential spatial expression of A- and B-type CDKs, and distribution of auxins and cytokinins in the open transverse root apical meristem of Cucurbita maxima 
Annals of Botany  2010;107(7):1223-1234.
Background and Aims
Aside from those on Arabidopsis, very few studies have focused on spatial expression of cyclin-dependent kinases (CDKs) in root apical meristems (RAMs), and, indeed, none has been undertaken for open meristems. The extent of interfacing between cell cycle genes and plant growth regulators is also an increasingly important issue in plant cell cycle studies. Here spatial expression/localization of an A-type and B-type CDK, auxin and cytokinins are reported in relation to the hitherto unexplored anatomy of RAMs of Cucurbita maxima.
Median longitudinal sections were cut from 1-cm-long primary root tips of C. maxima. Full-length A-type CDKs and a B-type CDK were cloned from C. maxima using degenerate primers, probes of which were localized on sections of RAMs using in situ hybridization. Isopentenyladenine (iPA), trans-zeatin (t-Z) and indole-3yl-acetic acid (IAA) were identified on sections by immunolocalization.
Key Results
The C. cucurbita RAM conformed to an open transverse (OT) meristem typified by an absence of a clear boundary between the eumeristem and root cap columella, but with a distinctive longitudinally thickened epidermis. Cucma;CDKA;1 expression was detected strongly in the longitudinally thickened epidermis, a tissue with mitotic competence that contributes cells radially to the root cap of OT meristems. Cucma;CDKB2 was expressed mainly in proliferative regions of the RAM and in lateral root primordia. iPA and t-Z were mainly distributed in differentiated cells whilst IAA was distributed more uniformly in all tissues of the RAM.
Cucma;CDKA;1 was expressed most strongly in cells that have proliferative competence whereas Cucma;CDKB2 was confined mainly to mitotic cells. iPA and t-Z marked differentiated cells in the RAM, consistent with the known effect of cytokinins in promoting differentiation in root systems. iPA/t-Z were distributed in a converse pattern to Cucma;CDKB2 expression whereas IAA was detected in most cells in the RAM regardless of their proliferative potential.
PMCID: PMC3091794  PMID: 20601387
Auxin; cytokinins; CDKs; Cucurbita maxima; root apical meristems
11.  Perturbation of cytokinin and ethylene-signalling pathways explain the strong rooting phenotype exhibited by Arabidopsis expressing the Schizosaccharomyces pombe mitotic inducer, cdc25 
BMC Plant Biology  2012;12:45.
Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp) cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis.
Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM) compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased.
We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over-production. The increased rooting phenotype in Spcdc25 expressing plants is due to an increase in the ratio of endogenous auxin to cytokinin that is known to stimulate an increased rate of lateral root production. Overall, our data reveal important cross talk between cell division and plant growth regulators leading to developmental changes.
PMCID: PMC3362767  PMID: 22452972
12.  In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning 
Journal of Experimental Botany  2011;63(2):695-709.
In mammals, cadmium is widely considered as a non-genotoxic carcinogen acting through a methylation-dependent epigenetic mechanism. Here, the effects of Cd treatment on the DNA methylation patten are examined together with its effect on chromatin reconfiguration in Posidonia oceanica. DNA methylation level and pattern were analysed in actively growing organs, under short- (6 h) and long- (2 d or 4 d) term and low (10 μM) and high (50 μM) doses of Cd, through a Methylation-Sensitive Amplification Polymorphism technique and an immunocytological approach, respectively. The expression of one member of the CHROMOMETHYLASE (CMT) family, a DNA methyltransferase, was also assessed by qRT-PCR. Nuclear chromatin ultrastructure was investigated by transmission electron microscopy. Cd treatment induced a DNA hypermethylation, as well as an up-regulation of CMT, indicating that de novo methylation did indeed occur. Moreover, a high dose of Cd led to a progressive heterochromatinization of interphase nuclei and apoptotic figures were also observed after long-term treatment. The data demonstrate that Cd perturbs the DNA methylation status through the involvement of a specific methyltransferase. Such changes are linked to nuclear chromatin reconfiguration likely to establish a new balance of expressed/repressed chromatin. Overall, the data show an epigenetic basis to the mechanism underlying Cd toxicity in plants.
PMCID: PMC3254685  PMID: 22058406
5-Methylcytosine-antibody; cadmium-stress condition; chromatin reconfiguration; CHROMOMETHYLASE; DNA-methylation; Methylation- Sensitive Amplification Polymorphism (MSAP); Posidonia oceanica (L.) Delile

Results 1-12 (12)