PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Exploitation of the Complement System by Oncogenic Kaposi's Sarcoma-Associated Herpesvirus for Cell Survival and Persistent Infection 
PLoS Pathogens  2014;10(9):e1004412.
During evolution, herpesviruses have developed numerous, and often very ingenious, strategies to counteract efficient host immunity. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV) eludes host immunity by undergoing a dormant stage, called latency wherein it expresses a minimal number of viral proteins to evade host immune activation. Here, we show that during latency, KSHV hijacks the complement pathway to promote cell survival. We detected strong deposition of complement membrane attack complex C5b-9 and the complement component C3 activated product C3b on Kaposi's sarcoma spindle tumor cells, and on human endothelial cells latently infected by KSHV, TIME-KSHV and TIVE-LTC, but not on their respective uninfected control cells, TIME and TIVE. We further showed that complement activation in latently KSHV-infected cells was mediated by the alternative complement pathway through down-regulation of cell surface complement regulatory proteins CD55 and CD59. Interestingly, complement activation caused minimal cell death but promoted the survival of latently KSHV-infected cells grown in medium depleted of growth factors. We found that complement activation increased STAT3 tyrosine phosphorylation (Y705) of KSHV-infected cells, which was required for the enhanced cell survival. Furthermore, overexpression of either CD55 or CD59 in latently KSHV-infected cells was sufficient to inhibit complement activation, prevent STAT3 Y705 phosphorylation and abolish the enhanced survival of cells cultured in growth factor-depleted condition. Together, these results demonstrate a novel mechanism by which an oncogenic virus subverts and exploits the host innate immune system to promote viral persistent infection.
Author Summary
The complement system is an important part of the innate immune system. Pathogens have evolved diverse strategies to evade host immune responses including attack of the complement system. Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with Kaposi's sarcoma (KS), primary effusion lymphoma and a subset of multicentric Castleman's disease. KSHV encodes a number of viral proteins to counter host immune responses during productive lytic replication. On the other hand, KSHV utilizes latency as a default replication program during which it expresses a minimal number of proteins to evade host immune detection. Thus, the complement system is expected to be silent during KSHV latency. In this study, we have found that the complement system is unexpectedly activated in latently KSHV-infected endothelial cells and in KS tumor cells wherein KSHV downregulates the expression of CD55 and CD59 complement regulatory proteins. More interestingly, most of latently KSHV-infected cells not only are resistant to complement-mediated cell killing, but also acquire survival advantage by inducing STAT3 tyrosine phosphorylation. These results demonstrate a novel mechanism by which an oncogenic virus exploits the host innate immune system to promote viral persistent infection.
doi:10.1371/journal.ppat.1004412
PMCID: PMC4177982  PMID: 25254972
2.  Down-regulation of microglial activity attenuates axotomized nigral dopaminergic neuronal cell loss 
BMC Neuroscience  2013;14:112.
Background
There is growing evidence that inflammatory processes of activated microglia could play an important role in the progression of nerve cell damage in neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease which harbor features of chronic microglial activation, though the precise mechanism is unknown. In this study, we presented in vivo and ex vivo experimental evidences indicating that activated microglia could exacerbate the survival of axotomized dopaminergic neurons and that appropriate inactivation of microglia could be neuroprotective.
Results
The transection of medial forebrain bundle (MFB) of a rat induced loss of dopaminergic neurons in a time-dependent manner and accompanied with microglial activation. Along with microglial activation, production of reactive oxygen species (ROS) was upregulated and TH/OX6/hydroethidine triple-immunofluorescence showed that the microglia mainly produced ROS. When the activated microglial cells that were isolated from the substantia nigra of the MFB axotomized animal, were transplanted into the substantia nigra of which MFB had been transected at 7 days ago, the survival rate of axotomized dopaminergic neurons was significantly reduced as compared with sham control. Meanwhile, when the microglial activation was attenuated by administration of tuftsin fragment 1-3 (microglia inhibitory factor) into the lateral ventricle using mini-osmotic pump, the survival rate of axotomized dopaminergic neurons was increased.
Conclusion
The present study suggests that activated microglia could actively produce and secrete unfavorable toxic substances, such as ROS, which could accelerate dopaminergic neuronal cell loss. So, well-controlled blockade of microglial activation might be neuroprotective in some neuropathological conditions.
doi:10.1186/1471-2202-14-112
PMCID: PMC3850886  PMID: 24093518
Medial forebrain bundle (MFB); Axotomy; Activated microglia; Reactive oxygen species; Tuftsin fragment 1-3
3.  Evidence of early involvement of apoptosis inducing factor-induced neuronal death in Alzheimer brain 
Anatomy & Cell Biology  2012;45(1):26-37.
Apoptosis inducing factor (AIF) has been proposed to act as a putative reactive oxygen species scavenger in mitochondria. When apoptotic cell death is triggered, AIF translocates to the nucleus, where it leads to nuclear chromatin condensation and large-scale DNA fragmentation which result in caspase-independent neuronal death. We performed this study to investigate the possibility that, in addition to caspase-dependent neuronal death, AIF induced neuronal death could be a cause of neuronal death in Alzheimer's disease (AD). We have found that AIF immunoreactivity was increased in the hippocampal pyramidal neurons in the Alzheimer brains compared to those of healthy, age-matched control brains. Nuclear AIF immunoreactivity was detected in the apoptotic pyramidal CA1 neurons at the early stage of AD and CA2 at the advanced stage. Nuclear AIF positive neurons were also observed in the amygdala and cholinergic neurons of the basal forebrain (BFCN) from the early stages of AD. The results of this study imply that AIF-induced apoptosis may contribute to neuronal death within the hippocampus, amygdala, and BFCN in early of AD.
doi:10.5115/acb.2012.45.1.26
PMCID: PMC3328738  PMID: 22536549
Alzheimer disease; Apoptosis inducing factor; Caspase-independent neuronal death; Human brain
4.  Co-localization of activating transcription factor 3 and phosphorylated c-Jun in axotomized facial motoneurons 
Anatomy & Cell Biology  2011;44(3):226-237.
Activating transcription factor 3 (ATF3) and c-Jun play key roles in either cell death or cell survival, depending on the cellular background. To evaluate the functional significance of ATF3/c-Jun in the peripheral nervous system, we examined neuronal cell death, activation of ATF3/c-Jun, and microglial responses in facial motor nuclei up to 24 weeks after an extracranial facial nerve axotomy in adult rats. Following the axotomy, neuronal survival rate was progressively but significantly reduced to 79.1% at 16 weeks post-lesion (wpl) and to 65.2% at 24 wpl. ATF3 and phosphorylated c-Jun (pc-Jun) were detected in the majority of ipsilateral facial motoneurons with normal size and morphology during the early stage of degeneration (1-2 wpl). Thereafter, the number of facial motoneurons decreased gradually, and both ATF3 and pc-Jun were identified in degenerating neurons only. ATF3 and pc-Jun were co-localized in most cases. Additionally, a large number of activated microglia, recognized by OX6 (rat MHC II marker) and ED1 (phagocytic marker), gathered in the ipsilateral facial motor nuclei. Importantly, numerous OX6- and ED1-positive, phagocytic microglia closely surrounded and ingested pc-Jun-positive, degenerating neurons. Taken together, our results indicate that long-lasting co-localization of ATF3 and pc-Jun in axotomized facial motoneurons may be related to degenerative cascades provoked by an extracranial facial nerve axotomy.
doi:10.5115/acb.2011.44.3.226
PMCID: PMC3195827  PMID: 22025975
Facial nerve axotomy; ATF3; pc-Jun; Microglia; Neurodegeneration
5.  Expression of ErbB4 in the neurons of Alzheimer's disease brain and APP/PS1 mice, a model of Alzheimer's disease 
Anatomy & Cell Biology  2011;44(2):116-127.
Neuregulin-1 (NRG1) plays important roles in the development and plasticity of the brain, and has also been reported to exhibit potent neuroprotective properties. Although ErbB4, a key NRG1 receptor, is expressed in multiple regions in the adult animal brain, little is known about its role in Alzheimer's disease (AD). AD is characterized by progressive impairment of cognition and behavioral disturbance that strongly correlate with degeneration and death of neurons in the cerebral cortex and limbic brain areas, such as the hippocampus and the amygdala. Here, we show that the ErbB4 and phospho-ErbB4 immunoreactivities were higher intensity in the neurons of the CA1-2 transitional field of AD brains as compared to age-matched controls. Also, ErbB4 expression was increased in the neurons of the cortico medial nucleus amygdala, human basal forebrain and superior frontal gyrus of AD brains. In cerebral cortex and hippocampus of amyloid precursor protein/presenilin 1 double transgenic mice, ErbB4 immunoreactivity significantly increased in comparison to age-matched wild type control. These results suggest that up-regulating of ErbB4 immunoreactivity may involve in the progression of pathology of AD.
doi:10.5115/acb.2011.44.2.116
PMCID: PMC3145840  PMID: 21829755
Alzheimer disease; ErbB4 receptor; Limbic structures; Neurodegeneration
6.  Expression of ErbB4 in the apoptotic neurons of Alzheimer's disease brain 
Anatomy & Cell Biology  2010;43(4):332-339.
Neuregulin-1 (NRG1) signaling participates in the synaptic plasticity, maintenance or regulation of adult brain. Although ErbB4, a key NRG1 receptor, is expressed in multiple regions in the adult animal brain, little is known about its localization in Alzheimer's disease (AD) brains. We previously reported that ErbB4 immunoreactivity showed regional difference in the hippocampus of age-matched control. In the present paper, immunohistochemical characterization of the distribution of ErbB4 receptor in the hippocampus relative to pathology staging were performed in age-matched control (Braak stage 0, n=6) and AD (Braak stage I/V, n=10). Here, we found that ErbB4 immunoreactivity was significantly increased in apoptotic hippocampal pyramidal neurons in the brains of AD patients, compared to those of age-matched control subjects. In AD brains, ErbB4 immunoreactivity was demonstrated to colocalize with the apoptotic signal Bax in apoptotic hippocampal pyramidal neurons. These results suggest that up-regulation of ErbB4 immunoreactivity in apoptotic neuron may involve in the progression of pathology of AD.
doi:10.5115/acb.2010.43.4.332
PMCID: PMC3026186  PMID: 21267408
Alzheimer's disease; ErbB4 receptor; Bax; Apoptosis; Neurodegeneration

Results 1-6 (6)