PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-19 (19)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Charge–transfer reaction of 2,3-dichloro-1,4-naphthoquinone with crizotinib: Spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib 
The reaction of 2,3-dichloro-1,4-naphthoquinone (DCNQ) with crizotinib (CZT; a novel drug used for treatment of non-small cell lung cancer) was investigated in different solvents of varying dielectric constants and polarity indexes. The reaction produced a red-colored product. Spectrophotometric investigations confirmed that the reaction proceeded through charge–transfer (CT) complex formation. The molar absorptivity of the complex was found to be linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9567 and 0.9069, respectively. The stoichiometric ratio of DCNQ:CZT was found to be 2:1 and the association constant of the complex was found to be 1.07 × 102 l/mol. The kinetics of the reaction was studied; the order of the reaction, rate and rate constant were determined. Computational molecular modeling for the complex between DCNQ and CZT was conducted, the sites of interaction on CZT molecule were determined, and the mechanism of the reaction was postulated. The reaction was employed as a basis in the development of a novel 96-microwell assay for CZT in a linear range of 4–500 μg/ml. The assay limits of detection and quantitation were 2.06 and 6.23 μg/ml, respectively. The assay was validated as per the guidelines of the International Conference on Harmonization (ICH) and successfully applied to the analysis of CZT in its bulk and capsules with good accuracy and precision. The assay has high throughput and consumes a minimum volume of organic solvents thus it reduces the exposures of the analysts to the toxic effects of organic solvents, and significantly reduces the analysis cost.
doi:10.1016/j.jsps.2014.06.003
PMCID: PMC4310957
2,3-Dichloro-1,4-naphthoquinone; Crizotinib; Charge–transfer reaction; Spectrophotometry; Microwell assay; High throughput analysis
2.  Novel microwell assay with high throughput and minimum consumption for organic solvents in the charge transfer-based spectrophotometric determination of clarithromycin in pharmaceutical formulations 
Background
Clarithromycin (CLM) is a semi-synthetic macrolide antibiotic with a broad antibacterial spectrum. It has a potent activity against Myc. Pneumonia, Legionella Spp., H. Influenza, and Mor. Catarrhalis. It is also used for prevention and treatment of disseminated M. Avium infections in patients with AIDS. The therapeutic importance and wide use of CLM promotes the growing interest in developing proper methods for its determination in bulk and pharmaceutical formulations.
Results
The present study describes the development and validation of a novel assay that can increase the throughput and reduce the consumption of organic solvents in the charge transfer (CT)-based spectrophotometric determination of CLM. In this assay, the CT reaction between CLM as n-electron donor and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as a π-electron acceptor was performed in the 96-microwells of an assay plate. The color signals of the CT complex were measured at 450 nm by microwell-plate absorbance reader. The linear range of the assay was 20−850 μg mL−1. The limits of detection and quantitation were 15.5 and 51.2 μg mL−1, respectively. The proposed assay gave very high precisions; the relative standard deviation (RSD) values did not exceed 1.82%.
Conclusions
The assay described herein has a high throughput property that facilitates the processing of large number of samples in a reasonable time. As well, it consumes minimum volumes of organic solvents, thus it significantly reduces the exposures of the analysts to the toxic effects of organic solvents, and reduce the analysis cost by 50-folds. The results demonstrated that the proposed assay has great practical value in the routine analysis of CLM in quality control laboratories.
doi:10.1186/1752-153X-7-172
PMCID: PMC3817450  PMID: 24176103
Clarithromycin; Microwell spectrophotometric assay; Charge-transfer; Organic solvents; High analysis throughput
3.  Trace determination of lenalidomide in plasma by non-extractive HPLC procedures with fluorescence detection after pre-column derivatization with fluorescamine 
Background
Lenalidomide (LND) is a new potent drug used for treatment of multiple myeloma. For its pharmacokinetic studies and therapeutic monitoring, a proper analytical method was required.
Results
In this study, a non extractive and simple pre-column derivatization procedures have been proposed, for the for trace determination of lenalidomide (LND) in human plasma by HPLC with fluorescence detection. Plasma samples were treated with acetonitrile for protein precipitation then treated with copper acetate to form stable complexes with the biogenic amines and mask their interference with the derivatization reaction of LND. Treated plasma samples containing LND was derivatized with fluorescamine (FLC) in aqueous media at ambient temperature. Separation of the derivatized LND was performed on Hypersil BDS C18 column (250 × 4.6 mm, 5 μm particle size) using a mobile phase consisting of phosphate buffer (pH 4):methanol: tetrahydrofuran (70:10:20, v/v) at a flow rate of 1.0 mL/min. The derivatized samples were monitored at an emission wavelength of 495 nm after excitation at a wavelength of 382 nm. Under the optimum chromatographic conditions, a linear relationship with good correlation coefficient (r = 0.9997, n = 9) was found between the peak area and LND concentrations in the range of 2–100 ng/mL. The limits of detection and quantitation were 0.8 and 2.30 ng/mL, respectively. The intra- and inter-assay precisions were satisfactory and the accuracy of the method was proved. The recovery of LND from the spiked human plasma was 99.30 ± 2.88.
Conclusions
The proposed method had high throughput as the analysis involved simple sample pre-treatment procedure and a relatively short run-time (< 15 min). The results demonstrated that the method would have a great value when it is applied in the therapeutic monitoring and pharmacokinetic studies for LND.
doi:10.1186/1752-153X-7-52
PMCID: PMC3618069  PMID: 23497635
Lenalidomide; Fluorescamine; HPLC; Fluorescence detection; Therapeutic drug; Monitoring; Pharmacokinetic studies
4.  Development and validation of ultra-performance liquid chromatographic method with tandem mass spectrometry for determination of lenalidomide in rabbit and human plasma 
Background
Lenalidomide (LND) is a potent novel thalidomide analog which demonstrated remarkable clinical activity in treatment of multiple myeloma disease via a multiple-pathways mechanism. Validated sensitive method with high throughput is required for the determination of lenalidomide for pharmacokinetics and toxicokinetic studies. Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is a preeminent analytical tool for rapid biomedical analysis.
Results
A simple, highly sensitive UPLC-MS/MS method was developed and validated for the determination of LND in rabbit and human plasma. After a simple protein precipitation using methanol, LND and carbamazepine (IS) were separated on Acquity UPLC BEH™ C18 column (50 × 2.1 mm, i.d. 1.7 μm, Waters, USA) using a mobile phase consisted of acetonitrile:water:formic acid (65:35:0.1%, v/v/v) pumped at a flow rate of 0.2 mL/min. LND and IS were eluted at 0.71 and 1.92 min, respectively. The mass spectrometric determination was carried out using an electrospray interface operated in the positive mode with multiple reaction monitoring (MRM) mode. The precursor to product ion transitions of m/z 260.1 > 149.0 and m/z 237.0 > 179.0 were used to quantify LND and IS, respectively. The method was linear in the concentration range of 0.23–1000 ng/mL with a limit of quantitation of 0.23 ng/mL. All the validation parameters were in the ranges acceptable by the guidelines of analytical method validation.
Conclusion
The proposed UPLC-MS/MS method is simple, rapid and highly sensitive, and hence it could be reliable for pharmacokinetic and toxicokinetic study in both animals and humans.
doi:10.1186/1752-153X-7-7
PMCID: PMC3608328  PMID: 23316845
Lenalidomide; Ultra performance liquid chromatography; Tandem mass spectrometry; Pharmacokinetic and toxicokinetic; High throughput analysis
5.  Use of response surface methodology for development of new microwell-based spectrophotometric method for determination of atrovastatin calcium in tablets 
Background
Response surface methodology by Box–Behnken design employing the multivariate approach enables substantial improvement in the method development using fewer experiments, without wastage of large volumes of organic solvents, which leads to high analysis cost. This methodology has not been employed for development of a method for analysis of atorvastatin calcium (ATR-Ca).
Results
The present research study describes the use of in optimization and validation of a new microwell-based UV-Visible spectrophotometric method of for determination of ATR-Ca in its tablets. By the use of quadratic regression analysis, equations were developed to describe the behavior of the response as simultaneous functions of the selected independent variables. Accordingly, the optimum conditions were determined which included concentration of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), time of reaction and temperature. The absorbance of the colored-CT complex was measured at 460 nm by microwell-plate absorbance reader. The method was validated, in accordance with ICH guidelines for accuracy, precision, selectivity and linearity (r² = 0.9993) over the concentration range of 20–200 μg/ml. The assay was successfully applied to the analysis of ATR-Ca in its pharmaceutical dosage forms with good accuracy and precision.
Conclusion
The assay described herein has great practical value in the routine analysis of ATR-Ca in quality control laboratories, as it has high throughput property, consumes minimum volume of organic solvent thus it offers the reduction in the exposures of the analysts to the toxic effects of organic solvents, environmentally friendly "Green" approach) and reduction in the analysis cost by 50-fold.
doi:10.1186/1752-153X-6-134
PMCID: PMC3505740  PMID: 23146143
Response surface methodology; Atorvastatin; Validation; Optimization; Tablets
6.  Synthesis of hapten and preparation of specific polyclonal antibody with high affinity for lenalidomide, the potent drug for treatment of multiple myeloma 
Background
For therapeutic monitoring and pharmacokinetic studies of lenalidomide (LND), the potent drug for treatment of multiple myeloma (MM), a specific antibody was required for the development of a sensitive immunoassay system for the accurate determination of LND in plasma.
Results
In this study, a hapten of LND (N-glutaryl-LND) was synthesized by introducing the glutaryl moiety, as a spacer, into the primary aromatic amine site of the LND molecular structure. The structure of the hapten (G-LND) was confirmed by mass, 1H-NMR, and 13C spectrometric techniques. G-LND was coupled to each of bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH) proteins by ethyl-3-(3-dimethylaminopropyl) carbodiimide as a coupling reagent. LND-KLH conjugate was used as an immunogen. Four female 2-3 months old New Zealand white rabbits were immunized with an emulsion of LND-KLH with Freund`s adjuvant. The immune response of the rabbits was monitored by direct enzyme-linked immunosorbent assay (ELISA) using LND-BSA immobilized onto microwell plates as a solid phase. The rabbit that showed the highest antibody titer and affinity to LND was scarified and its sera were collected. The IgG fraction was isolated and purified by affinity chromatography on protein A column. The specificity of the purified antibody for LND was evaluated by indirect competitive ELISA using dexamethasone as a competitor as it is used with LND in a combination therapy.
Conclusions
The high affinity of the antibody (IC50 = 10 ng/mL) will be useful in the development of an immunoassay system for the determination of plasma LND concentrations. Current research is going to optimize the assay conditions and validate the procedures for the routine application in clinical laboratories.
doi:10.1186/1752-153X-6-125
PMCID: PMC3496571  PMID: 23101764
Multiple myeloma; Lenalidomide; Polyclonal antibody; ELISA; Therapeutic monitoring; Pharmacokinetic studies
7.  A highly sensitive fluorimetric method for determination of lenalidomide in its bulk form and capsules via derivatization with fluorescamine 
Background
Lenalidomide (LND) is a potent novel thalidomide analog which demonstrated remarkable clinical activity in treatment of multiple myeloma disease via a multiple-pathways mechanism. The strong evidences-based clinical success of LND in patients has led to its recent approval by US-FDA under the trade name of Revlimid® capsules by Celgene Corporation. Fluorimetry is a convenient technique for pharmaceutical quality control, however there was a fluorimetric method for determination of LND in its bulk and capsules.
Results
A novel highly sensitive and simple fluorimetric method has been developed and validated for the determination of lenalidmide (LND) in its bulk and dosage forms (capsules). The method was based on nucleophilic substitution reaction of LND with fluorescamine (FLC) in aqueous medium to form a highly fluorescent derivative that was measured at 494 nm after excitation at 381 nm. The factors affecting the reaction were carefully studied and optimized. The kinetics of the reaction was investigated, and the reaction mechanism was postulated. Under the optimized conditions, linear relationship with good correlation coefficient (0.9999) was found between the fluorescence intensity and LND concentration in the range of 25–300 ng/mL. The limits of detection and quantitation for the method were 2.9 and 8.7 ng/mL, respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 1.4%. The proposed method was successfully applied to the determination of LND in its bulk form and pharmaceutical capsules with good accuracy; the recovery values were 97.8–101.4 ± 1.08–2.75%.
Conclusions
The proposed method is selective and involved simple procedures. In conclusion, the method is practical and valuable for routine application in quality control laboratories for determination of LND.
doi:10.1186/1752-153X-6-118
PMCID: PMC3537752  PMID: 23068782
Lenalidomide; Fluorescamine; Flourimetry; Pharmaceutical analysis
8.  Novel spectrophotometric method for determination of cinacalcet hydrochloride in its tablets via derivatization with 1,2-naphthoquinone-4-sulphonate 
This study represents the first report on the development of a novel spectrophotometric method for determination of cinacalcet hydrochloride (CIN) in its tablet dosage forms. Studies were carried out to investigate the reaction between CIN and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. In alkaline medium (pH 8.5), an orange red-colored product exhibiting maximum absorption peak (λmax) at 490 nm was produced. The stoichiometry and kinetic of the reaction were investigated and the reaction mechanism was postulated. This color-developing reaction was employed in the development of a simple and rapid visible-spectrophotometric method for determination of CIN in its tablets. Under the optimized reaction conditions, Beer's law correlating the absorbance with CIN concentration was obeyed in the range of 3 - 100 μg/ml with good correlation coefficient (0.9993). The molar absorptivity (ε) was 4.2 × 105 l/mol/cm. The limits of detection and quantification were 1.9 and 5.7 μg/ml, respectively. The precision of the method was satisfactory; the values of relative standard deviations (RSD) did not exceed 2%. No interference was observed from the excipients that are present in the tablets. The proposed method was applied successfully for the determination of CIN in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was 100.80 - 102.23 ± 1.27 - 1.62%. The results were compared favorably with those of a reference pre-validated method. The method is practical and valuable in terms of its routine application in quality control laboratories.
doi:10.1186/1752-153X-6-11
PMCID: PMC3295732  PMID: 22305461
Cinacalcet HCl; 1,2-Naphthoquinone-4-sulphonate; Kinetic; Spectrophotometry; Pharmaceutical analysis
9.  Development of a novel 96-microwell assay with high throughput for determination of olmesartan medoxomil in its tablets 
A novel 96-microwell-based spectrophotometric assay has been developed and validated for determination of olmesartan medoxomil (OLM) in tablets. The formation of a colored charge-transfer (CT) complex between OLM as a n-electron donor and 2, 5-dichloro-3, 6-dihydroxy-1, 4-benzoquinone (p-chloranilic acid, pCA) as a π-electron acceptor was investigated, for the first time, and employed as a basis in the development of the proposed assay. The proposed assay was carried out in 96-microwell plates. The absorbance of the colored-CT complex was measured at 490 nm by microwell-plate absorbance reader. The optimum conditions of the reaction and the analytical procedures of the assay were established. Under the optimum conditions, linear relationship with good correlation coefficient was found between the absorbance and the concentration of OLM in the range of 1-200 μg ml-1. The limits of detection and quantitation were 0.3 and 1 μg ml-1, respectively. No interference was observed from the additives that are present in the pharmaceutical formulation or from hydrochlorothiazide and amlodipine that are co-formulated with OLM in some formulations. The assay was successfully applied to the analysis of OLM in tablets with good accuracy and precision. The assay described herein has great practical value in the routine analysis of OLM in quality control laboratories, as it has high throughput property, consumes minimum volume of organic solvent thus it offers the reduction in the exposures of the analysts to the toxic effects of organic solvents, and reduction in the analysis cost by 50-fold. Although the proposed assay was validated for OLM, however, the same methodology could be used for any electron-donating analyte for which a CT reaction can be performed.
doi:10.1186/1752-153X-6-1
PMCID: PMC3275517  PMID: 22214530
Olmesartan medoxomil; Charge-transfer reaction; Spectrophotometry; Microwell-based assay; High throughput analysis
10.  Novel microwell-based spectrophotometric assay for determination of atorvastatin calcium in its pharmaceutical formulations 
The formation of a colored charge-transfer (CT) complex between atorvastatin calcium (ATR-Ca) as a n-electron donor and 2, 3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as a π-electron acceptor was investigated, for the first time. The spectral characteristics of the CT complex have been described, and the reaction mechanism has been proved by computational molecular modeling. The reaction was employed in the development of a novel microwell-based spectrophotometric assay for determination of ATR-Ca in its pharmaceutical formulations. The proposed assay was carried out in 96-microwell plates. The absorbance of the colored-CT complex was measured at 460 nm by microwell-plate absorbance reader. The optimum conditions of the reaction and the analytical procedures of the assay were established. Under the optimum conditions, linear relationship with good correlation coefficient (0.9995) was found between the absorbance and the concentration of ATR-Ca in the range of 10-150 μg/well. The limits of detection and quantitation were 5.3 and 15.8 μg/well, respectively. No interference was observed from the additives that are present in the pharmaceutical formulation or from the drugs that are co-formulated with ATR-Ca in its combined formulations. The assay was successfully applied to the analysis of ATR-Ca in its pharmaceutical dosage forms with good accuracy and precision. The assay described herein has great practical value in the routine analysis of ATR-Ca in quality control laboratories, as it has high throughput property, consumes minimum volume of organic solvent thus it offers the reduction in the exposures of the analysts to the toxic effects of organic solvents, and reduction in the analysis cost by 50-fold. Although the proposed assay was validated for ATR-Ca, however, the same methodology could be used for any electron-donating analyte for which a CT reaction can be performed.
doi:10.1186/1752-153X-5-57
PMCID: PMC3212923  PMID: 21982201
11.  Generation of polyclonal antibody with high avidity to rosuvastatin and its use in development of highly sensitive ELISA for determination of rosuvastatin in plasma 
In this study, a polyclonal antibody with high avidity and specificity to the potent hypocholesterolaemic agent rosuvastatin (ROS) has been prepared and used in the development of highly sensitive enzyme-linked immunosorbent assay (ELISA) for determination of ROS in plasma. ROS was coupled to keyhole limpt hemocyanin (KLH) and bovine serum albumin (BSA) using carbodiimide reagent. ROS-KLH conjugate was used for immunization of female 8-weeks old New Zealand white rabbits. The immune response of the rabbits was monitored by direct ELISA using ROS-BSA immobilized onto microwell plates as a solid phase. The rabbit that showed the highest antibody titer and avidity to ROS was scarified and its sera were collected. The IgG fraction was isolated and purified by avidity chromatography on protein A column. The purified antibody showed high avidity to ROS; IC50 = 0.4 ng/ml. The specificity of the antibody for ROS was evaluated by indirect ELISA using various competitors from the ROS-structural analogues and the therapeutic agents used with ROS in a combination therapy. The proposed ELISA involved a competitive binding reaction between ROS, in plasma sample, and the immobilized ROS-BSA for the binding sites on a limited amount of the anti-ROS antibody. The bound anti-ROS antibody was quantified with horseradish peroxidase-labeled second anti-rabbit IgG antibody (HRP-IgG) and 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate for the peroxidase enzyme. The concentration of ROS in the sample was quantified by its ability to inhibit the binding of the anti-ROS antibody to the immobilized ROS-BSA and subsequently the color intensity in the assay wells. The assay enabled the determination of ROS in plasma at concentrations as low as 40 pg/ml.
doi:10.1186/1752-153X-5-38
PMCID: PMC3149564  PMID: 21726466
12.  A validated stability-indicating HPLC method for determination of varenicline in its bulk and tablets 
A simple, sensitive and accurate stability-indicating HPLC method has been developed and validated for determination of varenicline (VRC) in its bulk form and pharmaceutical tablets. Chromatographic separation was achieved on a Zorbax Eclipse XDB-C8 column (150 mm × 4.6 mm i.d., particle size 5 μm, maintained at ambient temperature) by a mobile phase consisted of acetonitrile and 50 mM potassium dihydrogen phosphate buffer (10:90, v/v) with apparent pH of 3.5 ± 0.1 and a flow rate of 1.0 ml/min. The detection wavelength was set at 235 nm. VRC was subjected to different accelerated stress conditions. The degradation products, when any, were well resolved from the pure drug with significantly different retention time values. The method was linear (r = 0.9998) at a concentration range of 2 - 14 μg/ml. The limit of detection and limit of quantitation were 0.38 and 1.11 μg/ml, respectively. The intra- and inter-assay precisions were satisfactory; the relative standard deviations did not exceed 2%. The accuracy of the method was proved; the mean recovery of VRC was 100.10 ± 1.08%. The proposed method has high throughput as the analysis involved short run-time (~ 6 min). The method met the ICH/FDA regulatory requirements. The proposed method was successfully applied for the determination of VRC in bulk and tablets with acceptable accuracy and precisions; the label claim percentages were 99.65 ± 0.32%. The results demonstrated that the method would have a great value when applied in quality control and stability studies for VRC.
doi:10.1186/1752-153X-5-30
PMCID: PMC3133535  PMID: 21672253
13.  New Spectrophotometric and Fluorimetric Methods for Determination of Fluoxetine in Pharmaceutical Formulations 
New simple and sensitive spectrophotometric and fluorimetric methods have been developed and validated for the determination of fluoxetine hydrochloride (FLX) in its pharmaceutical formulations. The spectrophotometric method was based on the reaction of FLX with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium (pH 11) to form an orange-colored product that was measured at 490 nm. The fluorimetric method was based on the reaction of FLX with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in an alkaline medium (pH 8) to form a highly fluorescent product that was measured at 545 nm after excitation at 490 nm. The variables affecting the reactions of FLX with both NQS and NBD-Cl were carefully studied and optimized. The kinetics of the reactions were investigated, and the reaction mechanisms were presented. Under the optimum reaction conditions, good linear relationships were found between the readings and the concentrations of FLX in the ranges of 0.3–6 and 0.035–0.5 μg mL−1 for the spectrophotometric and fluorimetric methods, respectively. The limits of detection were 0.1 and 0.01 μg mL−1 for the spectrophotometric and fluorimetric methods, respectively. Both methods were successfully applied to the determination of FLX in its pharmaceutical formulations.
doi:10.1155/2009/257306
PMCID: PMC2809328  PMID: 20107560
14.  Simple Spectrophotometric Method for Determination of Paroxetine in Tablets Using 1,2-Naphthoquinone-4-Sulphonate as a Chromogenic Reagent 
Simple and rapid spectrophotometric method has been developed and validated for the determination of paroxetine (PRX) in tablets. The proposed method was based on nucleophilic substitution reaction of PRX with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium to form an orange-colored product of maximum absorption peak (λmax) at 488 nm. The stoichiometry and kinetics of the reaction were studied, and the reaction mechanism was postulated. Under the optimized reaction conditions, Beer's law correlating the absorbance (A) with PRX concentration (C) was obeyed in the range of 1–8 μg mL−1. The regression equation for the calibration data was: A = 0.0031 + 0.1609 C, with good correlation coefficients (0.9992). The molar absorptivity (ε) was 5.9 × 105 L mol−1 1 cm−1. The limits of detection and quantitation were 0.3 and 0.8 μg mL−1, respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 2%. The proposed method was successfully applied to the determination of PRX in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was 97.17 ± 1.06 %. The results obtained by the proposed method were comparable with those obtained by the official method.
doi:10.1155/2009/237601
PMCID: PMC2809334  PMID: 20107559
15.  Selective Spectrophotometric and Spectrofluorometric Methods for the Determination of Amantadine Hydrochloride in Capsules and Plasma via Derivatization with 1,2-Naphthoquinone-4-sulphonate 
New selective and sensitive spectrophotometric and spectrofluorometric methods have been developed and validated for the determination of amantadine hydrochloride (AMD) in capsules and plasma. The methods were based on the condensation of AMD with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium to form an orange-colored product. The spectrophotometric method involved the measurement of the colored product at 460  nm. The spectrofluorometric method involved the reduction of the product with potassium borohydride, and the subsequent measurement of the formed fluorescent reduced AMD-NQS product at 382  nm after excitation at 293  nm. The variables that affected the reaction were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9972–0.9974) and low LOD (1.39 and 0.013 μg mL−1) were obtained in the ranges of 5–80 and 0.05–10  μg mL−1 for the spectrophotometric and spectrofluorometric methods, respectively. The precisions of the methods were satisfactory; RSD ≤2.04%. Both methods were successfully applied to the determination of AMD in capsules. As its higher sensitivity, the spectrofluorometric method was applied to the determination of AMD in plasma; the recovery was 96.3–101.2 ± 0.57–4.2%. The results obtained by the proposed methods were comparable with those obtained by the official method
doi:10.1155/2009/810104
PMCID: PMC2814141  PMID: 20140080
16.  New Spectrofluorimetric Method with Enhanced Sensitivity for Determination of Paroxetine in Dosage Forms and Plasma 
New simple spectrofluorimetric method with enhanced sensitivity has been developed and validated for the determination of the antidepressant paroxetine (PXT) in its dosage forms and plasma. The method was based on nucleophilic substitution reaction of PXT with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole in an alkaline medium (pH 8) to form a highly fluorescent derivative that was measured at 545 nm after excitation at 490 nm. The factors affecting the reaction was carefully studied and optimized. The kinetics of the reaction was investigated, and the reaction mechanism was presented. Under the optimized conditions, linear relationship with good correlation coefficient (0.9993) was found between the fluorescence intensity and PXT concentration in the range of 80–800 ng ml−1. The limits of detection and quantitation for the method were 25 and 77 ng ml−1, respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 3%. The proposed method was successfully applied to the determination of PXT in its pharmaceutical tablets with good accuracy; the recovery values were 100.2 ± 1.61%. The results obtained by the proposed method were comparable with those obtained by the official method. The proposed method is superior to the previously reported spectrofluorimetric method for determination of PXT in terms of its higher sensitivity and wider linear range. The high sensitivity of the method allowed its successful application to the analysis of PXT in spiked human plasma. The proposed method is practical and valuable for its routine application in quality control and clinical laboratories for analysis of PXT.
PMCID: PMC2701171  PMID: 19609398
paroxetine; NBD-C; spectroflourimetry; pharmaceutical analysis
17.  Quantitative Thin-Layer Chromatographic Method for Determination of Amantadine Hydrochloride 
A simple and accurate thin-layer chromatographic (TLC) method for quantitative determination of amantadine hydrochloride (AMD) was developed and validated. The method employed TLC aluminum plates pre-coated with silica gel 60F-254 as a stationary phase. The solvent system used for development consisted of n-hexane-methanol-diethylamine (80: 40: 5, v/v/v). The separated spots were visualized as brown spots after spraying with modified Dragendorff’s reagent solution. Amantadine hydrochloride was subjected to accelerated stress conditions: boiling, acid and alkaline hydrolysis, oxidation, and irradiation with ultraviolet light. The drug was found to be stable under all the investigated stress conditions. The method was validated for linearity, limits of detection (LOD) and quantitation (LOQ), precision, robustness, selectivity and accuracy. The optical densities of the separated spots were found to be linear with the amount of AMD in the range of 5-40 µg/spot with good correlation coefficient (r=0.9994). The LOD and LOQ values were 0.72 and 2.38 µg/spot, respectively. Statistical analysis proved that the method is repeatable and accurate for the determination of AMD. The method, in terms of its sensitivity, accuracy, precision, and robustness met the International Conference of Harmonization/Federal Drug Administration regulatory requirements. The proposed TLC method was successfully applied for the determination of AMD in bulk and capsules with good accuracy and precision; the label claim percentages were 99.0 ± 1.0%. The results obtained by the proposed TLC method were comparable with those obtained by the official method. The proposed method is more advantageous than the previously published chromatographic methods as it involved the most simple chromatographic technique; TLC. In addition, method relies on the use of inexpensive equipment, a scanner and software, and not critical derivatizing reagent, thus maximizing the ability of laboratories worldwide to analyze samples of AMD.
PMCID: PMC3614699  PMID: 23675083
amantadine hydrochloride; thin-layer chromatography; stability-indicating; pharmaceutical analysis
18.  Sensitive Indirect Spectrophotometric Method for Determination of H2-Receptor Antagonists in Pharmaceutical Formulations 
A simple, accurate and sensitive spectrophotometric method has been developed and validated for determination of H2-receptor antagonists: cimetidine, famotidine, nizatidine, and ranitidine hydrochloride. The method was based on the oxidation of these drugs with cerium (IV) in presence of perchloric acid and subsequent measurement of the excess Ce (IV) by its reaction with p-dimethylaminocinnamaldehyde to give a red colored product (λmax at 464 nm). The decrease in the absorption intensity (ΔA) of the colored product, due to the presence of the drug was correlated with its concentration in the sample solution. Different variables affecting the reaction were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9985-0.9994) were found between ΔA values and the concentrations of the drugs in a concentration range of 1-16 µg ml-1. The assay limits of detection and quantitation were 0.12-0.44 and 0.37-1.33 µg ml-1, respectively. The method was validated, in terms of accuracy, precision, ruggedness, and robustness; the results were satisfactory. The proposed method was successfully applied to the analysis of the investigated drugs in their pure and pharmaceutical dosage forms (recovery was 98.8-102.5 ± 0.79-1.72%) without interference from the common excipients. The results obtained by the proposed method were comparable with those obtained by the official methods.
PMCID: PMC3614635  PMID: 23675034
H2-receptors antagonists; cerium (IV); p-dimethylaminocinnamaldehyde; spectrophotometry; pharmaceutical analysis
19.  Immunoassay Methods and their Applications in Pharmaceutical Analysis: Basic Methodology and Recent Advances 
Immunoassays are bioanalytical methods in which the quantitation of the analyte depends on the reaction of an antigen (analyte) and an antibody. Immunoassays have been widely used in many important areas of pharmaceutical analysis such as diagnosis of diseases, therapeutic drug monitoring, clinical pharmacokinetic and bioequivalence studies in drug discovery and pharmaceutical industries. The importance and widespread of immunoassay methods in pharmaceutical analysis are attributed to their inherent specificity, high-throughput, and high sensitivity for the analysis of wide range of analytes in biological samples. Recently, marked improvements were achieved in the field of immunoassay development for the purposes of pharmaceutical analysis. These improvements involved the preparation of the unique immunoanalytical reagents, analysis of new categories of compounds, methodology, and instrumentation. The basic methodologies and recent advances in immunoassay methods applied in different fields of pharmaceutical analysis have been reviewed.
PMCID: PMC3614608  PMID: 23674985
immunoassay; pharmaceutical analysis; drug discovery; pharmaceutical industry; antibodies

Results 1-19 (19)