PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Lessons learnt from the first efficacy trial of a new infant tuberculosis vaccine since BCG 
Summary
Background
New tuberculosis (TB) vaccines are being developed to combat the global epidemic. A phase IIb trial of a candidate vaccine, MVA85A, was conducted in a high burden setting in South Africa to evaluate proof-of-concept efficacy for prevention of TB in infants.
Objective
To describe the study design and implementation lessons from an infant TB vaccine efficacy trial.
Methods
This was a randomised, controlled, double-blind clinical trial comparing the safety and efficacy of MVA85A to Candin control administered to 4–6-month-old, BCG-vaccinated, HIV-negative infants at a rural site in South Africa. Infants were followed up for 15–39 months for incident TB disease based on pre-specified endpoints.
Results
2797 infants were enrolled over 22 months. Factors adversely affecting recruitment and the solutions that were implemented are discussed. Slow case accrual led to six months extension of trial follow up.
Conclusion
The clinical, regulatory and research environment for modern efficacy trials of new TB vaccines are substantially different to that when BCG vaccine was first evaluated in infants. Future infant TB vaccine trials will need to allocate sufficient resources and optimise operational efficiency. A stringent TB case definition is necessary to maximize specificity, and TB case accrual must be monitored closely.
doi:10.1016/j.tube.2013.01.003
PMCID: PMC3608032  PMID: 23410889
BCG; Vaccine; Tuberculosis; Lessons learnt; Implementation
2.  A Phase IIa Trial of the New Tuberculosis Vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis–infected Adults 
Rationale: Novel tuberculosis (TB) vaccines should be safe and effective in populations infected with Mycobacterium tuberculosis (M.tb) and/or HIV for effective TB control.
Objective: To determine the safety and immunogenicity of MVA85A, a novel TB vaccine, among M.tb- and/or HIV-infected persons in a setting where TB and HIV are endemic.
Methods: An open-label, phase IIa trial was conducted in 48 adults with M.tb and/or HIV infection. Safety and immunogenicity were analyzed up to 52 weeks after intradermal vaccination with 5 × 107 plaque-forming units of MVA85A. Specific T-cell responses were characterized by IFN-γ enzyme-linked immunospot and whole blood intracellular cytokine staining assays.
Measurements and Main Results: MVA85A was well tolerated and no vaccine-related serious adverse events were recorded. MVA85A induced robust and durable response of mostly polyfunctional CD4+ T cells, coexpressing IFN-γ, tumor necrosis factor-α, and IL-2. Magnitudes of pre- and postvaccination T-cell responses were lower in HIV-infected, compared with HIV-uninfected, vaccinees. No significant effect of antiretroviral therapy on immunogenicity of MVA85A was observed.
Conclusions: MVA85A was safe and immunogenic in persons with HIV and/or M.tb infection. These results support further evaluation of safety and efficacy of this vaccine for prevention of TB in these target populations.
doi:10.1164/rccm.201108-1548OC
PMCID: PMC3326425  PMID: 22281831
tuberculosis; HIV-1; vaccine; MVA85A; clinical trial
3.  The Novel Tuberculosis Vaccine, AERAS-402, Induces Robust and Polyfunctional CD4+ and CD8+ T Cells in Adults 
Rationale: AERAS-402 is a novel tuberculosis vaccine designed to boost immunity primed by bacillus Calmette-Guérin (BCG), the only licensed vaccine.
Objectives: We investigated the safety and immunogenicity of AERAS-402 in healthy Mycobacterium tuberculosis–uninfected BCG-vaccinated adults from a tuberculosis-endemic region of South Africa.
Methods: Escalating doses of AERAS-402 vaccine were administered intramuscularly to each of three groups of healthy South African BCG-vaccinated adults, and a fourth group received two injections of the maximal dose. Participants were monitored for 6 months, with all adverse effects documented. Vaccine-induced CD4+ and CD8+ T-cell immunity was characterized by an intracellular cytokine staining assay of whole blood and peripheral blood mononuclear cells.
Measurements and Main Results: AERAS-402 was well tolerated, and no vaccine-related serious adverse events were recorded. The vaccine induced a robust CD4+ T-cell response dominated by cells coexpressing IFN-γ, tumor necrosis factor-α, and IL-2 (“polyfunctional” cells). AERAS-402 also induced a potent CD8+ T-cell response, characterized by cells expressing IFN-γ and/or tumor necrosis factor-α, which persisted for the duration of the study.
Conclusions: Vaccination with AERAS-402 is safe and immunogenic in healthy adults. The immunity induced by the vaccine appears promising: polyfunctional T cells are thought to be important for protection against intracellular pathogens such as Mycobacterium tuberculosis, and evidence is accumulating that CD8+ T cells are also important. AERAS-402 induced a robust and durable CD8+ T-cell response, which appears extremely promising.
Clinical trial registered with www.sanctr.gov.za (NHREC no. 1381).
doi:10.1164/rccm.200910-1484OC
PMCID: PMC2894413  PMID: 20167847
tuberculosis; vaccine; immunity; CD4; CD8
4.  MVA85A, a novel TB vaccine, is safe in adolescents and children, and induces complex subsets of polyfunctional CD4+ T cells 
European journal of immunology  2010;40(1):279-290.
Summary
MVA85A is a new tuberculosis vaccine aimed at enhancing immunity induced by BCG. We investigated the safety and immunogenicity of MVA85A in healthy adolescents and children from a tuberculosis endemic region, who received BCG at birth.
Twelve adolescents and 24 children were vaccinated and followed up for 12 or 6 months, respectively. Adverse events were documented and vaccine-induced immune responses assessed by IFN-γ ELISpot and intracellular cytokine staining.
The vaccine was well tolerated and there were no vaccine-related serious adverse events. MVA85A induced potent and durable T cell responses. Multiple CD4+ T cell subsets, based on expression of IFN-γ, TNF-α, IL-2, IL-17 and GM-CSF, were induced. Polyfunctional CD4+ T cells co-expressing IFN-γ, TNF-α and IL-2 dominated the response in both age groups. A novel CD4+ cell subset co-expressing these three Th1 cytokines and IL-17 was induced in adolescents, while a novel CD4+ T cell subset co-expressing Th1 cytokines and GM-CSF was induced in children. Antigen-specific CD8+ T cells were not detected.
We conclude that in adolescents and children MVA85A safely induces the type of immunity thought to be important in protection against tuberculosis. This includes induction of novel Th1 cell populations which have not been previously described in humans.
doi:10.1002/eji.200939754
PMCID: PMC3044835  PMID: 20017188
MVA85A; tuberculosis; vaccine; polyfunctional; IL-17
5.  Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa1 
The Journal of infectious diseases  2008;198(4):544-552.
BACKGROUND
The efficacy of BCG may be enhanced by heterologous vaccination strategies that boost the BCG-primed immune response. One leading booster vaccine, MVA85A, has shown promising safety and immunogenicity in UK human trials. We investigated the safety and immunogenicity of MVA85A in mycobacteria-exposed, but Mycobacterium tuberculosis-uninfected, healthy adults from a TB-endemic region of South Africa.
METHODS
Twenty-four adults were vaccinated with MVA85A. All subjects were followed up for one year for adverse events and for immunological assessment.
RESULTS
MVA85A vaccination was well tolerated and induced potent T cell responses, measured by IFN-γ ELISPOT assay, which exceeded pre-vaccination levels up to 364 days after vaccination. BCG-specific CD4+ T cells boosted by MVA85A comprised of multiple populations expressing combinations of IFN-γ, TNF-α, IL-2 and IL-17, as measured by polychromatic flow cytometry. IFN-γ expressing and polyfunctional IFN-γ+TNF-α+IL-2+ CD4+ T cells were boosted during the peak BCG-specific response 7 days post-vaccination.
CONCLUSION
The excellent safety profile and quantitative and qualitative immunogenicity data strongly support further trials to assess the efficacy of MVA85A as a boosting vaccine in TB endemic countries.
doi:10.1086/590185
PMCID: PMC2822902  PMID: 18582195
Vaccination; tuberculosis; T cells; MVA85A; South Africa

Results 1-5 (5)