Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Oxygen, Gastrin-Releasing Peptide, and Pediatric Lung Disease: Life in the Balance 
Excessive oxygen (O2) can cause tissue injury, scarring, aging, and even death. Our laboratory is studying O2-sensing pulmonary neuroendocrine cells (PNECs) and the PNEC-derived product gastrin-releasing peptide (GRP). Reactive oxygen species (ROS) generated from exposure to hyperoxia, ozone, or ionizing radiation (RT) can induce PNEC degranulation and GRP secretion. PNEC degranulation is also induced by hypoxia, and effects of hypoxia are mediated by free radicals. We have determined that excessive GRP leads to lung injury with acute and chronic inflammation, leading to pulmonary fibrosis (PF), triggered via ROS exposure or by directly treating mice with exogenous GRP. In animal models, GRP-blockade abrogates lung injury, inflammation, and fibrosis. The optimal time frame for GRP-blockade and the key target cell types remain to be determined. The concept of GRP as a mediator of ROS-induced tissue damage represents a paradigm shift about how O2 can cause injury, inflammation, and fibrosis. The host PNEC response in vivo may depend on individual ROS sensing mechanisms and subsequent GRP secretion. Ongoing scientific and clinical investigations promise to further clarify the molecular pathways and clinical relevance of GRP in the pathogenesis of diverse pediatric lung diseases.
PMCID: PMC4103080  PMID: 25101250
oxygen-sensing cells; pulmonary neuroendocrine cells; pulmonary fibrosis; radiation injury; bronchopulmonary dysplasia; macrophages; fibroblasts
2.  Corrigendum: Oxygen, Gastrin-Releasing Peptide, and Pediatric Lung Disease: Life in the Balance 
PMCID: PMC4183105
correction; ozone; gastrin-releasing peptide; lung; injury
3.  Centrifugal Migration of Mesenchymal Cells in Embryonic Lung 
Developmental Dynamics  2008;237(3):750-757.
Murine lung development begins at embryonic day (E) 9.5. Normal lung structure and function depend on the patterns of localization of differentiated cells. Pulmonary mesenchymal cell lineages have been relatively unexplored. Importantly, there has been no prior evidence of clonality of any lung cells. Herein we use a definitive genetic approach to demonstrate a common origin for proximal and distal pulmonary mesenchymal cells. A retroviral library with 3,400 unique inserts was microinjected into the airway lumen of E11.5 lung buds. After 7–11 days of culture, buds were stained for placental alkaline phosphatase (PLAP). Most PLAP+ cells are peribronchial smooth muscle cells, initially localized laterally near the hilum, then migrating down airways to the subpleural region. Laser-capture microdissection and polymerase chain reaction confirm the clonal identities of PLAP+ cells proximally and distally. Our observation of this fundamental process during lung development opens new avenues for investigation of maladaptive mesenchymal responses in lung diseases.
PMCID: PMC3340126  PMID: 18297731
retrovirus; microinjection; alkaline phosphatase; smooth muscle; clonal analysis
4.  Mel Avery: Mentor, Role Model, Friend, Mother of Us all 
PMCID: PMC3978364  PMID: 24745003
twentieth century; historical perspective; neonatology; translational medical research; basic science research; mentoring
5.  Bombesin-like Peptides Modulate Alveolarization and Angiogenesis in Bronchopulmonary Dysplasia 
Rationale: The incidence of bronchopulmonary dysplasia (BPD), a chronic lung disease of newborns, is paradoxically rising despite medical advances. We demonstrated elevated bombesin-like peptide levels in infants that later developed BPD. In the 140-day hyperoxic baboon model of BPD, anti-bombesin antibody 2A11 abrogated lung injury.
Objectives: To test the hypothesis that bombesin-like peptides mediate BPD in extremely premature baboons (born at Gestational Day 125 and given oxygen pro re nata [PRN], called the 125-day PRN model), similar to “modern-day BPD.”
Methods: The 125-day animals were treated with 2A11 on Postnatal Day 1 (P1), P3, and P6. On P14 and P21, lungs were inflation-fixed for histopathologic analyses of alveolarization. Regulation of angiogenesis by bombesin was evaluated using cultured pulmonary microvascular endothelial cells.
Measurements and Main Results: In 125-day PRN animals, urine bombesin-like peptide levels at P2–3 are directly correlated with impaired lung function at P14. Gastrin-releasing peptide (the major pulmonary bombesin-like peptide) mRNA was elevated eightfold at P1 and remained high thereafter. At P14, 2A11 reduced alveolar wall thickness and increased the percentage of secondary septa containing endothelial cells. At P21, 2A11-treated 125-day PRN animals had improved alveolarization according to mean linear intercepts and number of branch points per millimeter squared. Bombesin promoted tubulogenesis of cultured pulmonary microvascular endothelial cells, but cocultured fetal lung mesenchymal cells abrogated this effect.
Conclusions: Early bombesin-like peptide overproduction in 125-day PRN animals predicted alveolarization defects weeks later. Bombesin-like peptide blockade improved septation, with the greatest effects at P21. This could have implications for preventing BPD in premature infants.
PMCID: PMC2048672  PMID: 17585105
bombesin; gastrin-releasing peptide; mechanical ventilation; prematurity; antibody treatment
6.  NPAS1 Regulates Branching Morphogenesis in Embryonic Lung 
Drosophila trachealess (Trl), master regulator of tracheogenesis, has no known functional mammalian homolog. We hypothesized that genes similar to trachealess regulate lung development. Quantitative (Q)RT-PCR and immunostaining were used to determine spatial and temporal patterns of npas1 gene expression in developing murine lung. Immunostaining for α-smooth muscle actin demonstrated myofibroblasts, and protein gene product (PGP)9.5 identified neuroendocrine cells. Branching morphogenesis of embryonic lung buds was analyzed in the presence of antisense or sense oligodeoxynucleotides (ODN). Microarray analyses were performed to screen for changes in gene expression in antisense-treated lungs. QRT-PCR was used to validate the altered expression of key genes identified on the microarrays. We demonstrate that npas1 is expressed in murine embryonic lung. npas1 mRNA peaks early at Embryonic Day (E)10.5–E11.5, then drops to low levels. Sequencing verifies the identity of npas1 transcripts in embryonic lung. NPAS1 immunostaining occurs in nuclei of parabronchial mesenchymal cells, especially at the tracheal bifurcation. Arnt, the murine homolog of Tango (the heterodimerization partner for Trl) is also expressed in developing lung but at constant levels. npas1- or arnt-antisense ODN inhibit lung branching morphogenesis, with altered myofibroblast development and increased pulmonary neuroendocrine cells. On microarrays, we identify > 50 known genes down-regulated by npas1-antisense, including multiple genes regulating cell migration and cell differentiation. QRT-PCR confirms significantly decreased expression of the neurogenic genes RBP-Jk and Tle, and three genes involved in muscle development: β−ig-h3, claudin-11, and myocardin. Npas1 can regulate myofibroblast distribution, branching morphogenesis, and neuroendocrine cell differentiation in murine embryonic lung.
PMCID: PMC1899329  PMID: 17110583
branching morphogenesis; myofibroblasts; smooth muscle actin; cell migration; neuroendocrine cells
7.  Accelerated Thymic Maturation and Autoreactive T Cells in Bronchopulmonary Dysplasia 
Rationale: Bronchopulmonary dysplasia (BPD), a chronic lung disease of newborns triggered by oxygen and barotrauma, is characterized by arrested alveolarization. Increased levels of bombesin-like peptides shortly after birth mediate lung injury: anti-bombesin antibody 2A11 protects against BPD in two baboon models. The role of adaptive immunity in BPD has not been explored previously.
Objectives: Our goal was to test the hypothesis that thymic architecture and/or T-cell function is altered with BPD, leading to autoimmunity and immunodeficiency.
Methods: Thymic structure was analyzed by histopathology of thymic architecture and immunohistochemistry for thymic maturation markers (terminal deoxynucleotidyl transferase, proliferating cell nuclear antigen, CD4, and CD8). Thymic cortical epithelial cells (nurse cells) were studied using HLA-DR and protein gene product 9.5 as markers. Functional analysis was performed with “mixed lymphocyte reaction” of thymocyte or splenocyte responder cells with autologous lung cells as the stimulators.
Measurements and Main Results: 2A11 treatment attenuates thymic cortical involution in BPD animals, sustaining terminal deoxynucleotidyl transferase–positive prothymocytes and thymocyte proliferation. BPD animals have increased CD4+ cells in thymic cortex and lung interstitium, which are reduced by 2A11. Conversely, cortical protein gene product 9.5/HLA-DR–positive thymic nurse cells are depleted in BPD animals, but are preserved by 2A11-treatment. Whereas fetal thymocytes and splenocytes respond to phythemagglutinin/ionomycin and to a lesser extent, to autologous lung, BPD thymocytes and splenocytes are phythemagglutinin/ionomycin-unresponsive, and yet react strongly to autologous lung. The 2A11 normalizes these responses.
Conclusions: These observations suggest that bombesin-like peptides mediate premature thymic maturation and thymic nurse-cell depletion, leading to autoreactive T cells that could contribute to lung injury.
PMCID: PMC2662921  PMID: 16574933
animal model; bombesin; immunohistochemistry; mixed lymphocyte reaction; thymic nurse cells
8.  Bombesin Inhibits Alveolarization and Promotes Pulmonary Fibrosis in Newborn Mice 
Rationale: Bombesin-like peptides promote fetal lung development. Normally, levels of mammalian bombesin (gastrin-releasing peptide [GRP]) drop postnatally, but these levels are elevated in newborns that develop bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by arrested alveolarization. In premature baboons with BPD, antibombesin antibodies reduce lung injury and promote alveolarization.
Objectives: The present study tests whether exogenous bombesin or GRP given perinatally alters alveolar development in newborn mice.
Methods: Mice were given peptides intraperitoneally twice daily on Postnatal Days 1–3. On Day 14 lungs were inflation-fixed for histopathologic analyses of alveolarization.
Measurements and Main Results: Bombesin had multiple effects on Day 14 lung, when alveolarization was about half complete. First, bombesin induced alveolar myofibroblast proliferation and increased alveolar wall thickness compared with saline-treated control animals. Second, bombesin diminished alveolarization in C57BL/6 (but not Swiss-Webster) mice. We used receptor-null mice to explore which receptors might mediate these effects. Compared with wild-type littermates, bombesin-treated GRP receptor (GRPR)–null mice had increased interstitial fibrosis but reduced defects in alveolarization. Neuromedin B (NMB) receptor–null and bombesin receptor subtype 3–null mice had the same responses as their wild-type littermates. GRP had the same effects as bombesin, whereas neither NMB nor a synthetic bombesin receptor type 3 ligand had any effect. All effects of GRP were abrogated in GRPR-null mice.
Conclusions: Bombesin/GRP can induce features of BPD, including interstitial fibrosis and diminished alveolarization. GRPR appears to mediate all effects of GRP, but only part of the bombesin effect on alveolarization, suggesting that novel receptors may mediate some effects of bombesin in newborn lung.
PMCID: PMC2662976  PMID: 16603607
bronchopulmonary dysplasia; gastrin-releasing peptide; interstitial fibrosis; knock-out mice
9.  SP-A Preserves Airway Homeostasis During Mycoplasma pneumoniae Infection in Mice 
The lung is constantly challenged during normal breathing by a myriad of environmental irritants and infectious insults. Pulmonary host defense mechanisms maintain homeostasis between inhibition/clearance of pathogens and regulation of inflammatory responses that could injure the airway epithelium. One component of this defense mechanism, surfactant protein-A (SP-A), exerts multifunctional roles in mediating host responses to inflammatory and infectious agents. SP-A has a bacteriostatic effect on Mycoplasma pneumoniae (Mp), which occurs by binding surface disaturated phosphatidylglycerols. SP-A can also bind the Mp membrane protein, MPN372. In this study we investigated the role of SP-A during acute phase pulmonary infection with Mp using mice deficient in SP-A. Biologic responses, inflammation and cellular infiltration, were much greater in Mp infected SP-A−/− mice than wild type mice. Likewise, physiologic responses (airway hyperresponsiveness and lung compliance) to Mp infection were more severely affected in SP-A−/− mice. Both Mp-induced biologic and physiologic changes were attenuated by pharmacologic inhibition of TNF-α. Our findings demonstrate that SP-A is vital to preserving lung homeostasis and host defense to this clinically relevant strain of Mp by curtailing inflammatory cell recruitment and limiting an overzealous TNF-α response.
PMCID: PMC3656438  PMID: 19494306
lung; inflammation; bacterial
10.  Chronic treatment in vivo with β-adrenoceptor agonists induces dysfunction of airway β2-adrenoceptors and exacerbates lung inflammation in mice 
British Journal of Pharmacology  2012;165(7):2365-2377.
Inhalation of a β-adrenoceptor agonist (β-agonist) is first-line asthma therapy, used for both prophylaxis against, and acute relief of, bronchoconstriction. However, repeated clinical use of β-agonists leads to impaired bronchoprotection and, in some cases, adverse patient outcomes. Mechanisms underlying this β2-adrenoceptor dysfunction are not well understood, due largely to the lack of a comprehensive animal model and the uncertainty as to whether or not bronchorelaxation in mice is mediated by β2-adrenoceptors. Thus, we aimed to develop a mouse model that demonstrated functional β-agonist-induced β2-adrenoceptor desensitization in the context of allergic inflammatory airway disease.
We combined chronic allergen exposure with repeated β-agonist inhalation in allergen-treated BALB/C mice and examined the contribution of β2-adrenoceptors to albuterol-induced bronchoprotection using FVB/NJ mice with genetic deletion of β2-adrenoceptors (KO). Associated inflammatory changes – cytokines (ELISA), cells in bronchoalevolar lavage and airway remodelling (histology) and β2-adrenoceptor density (radioligand binding) – were also measured.
β2-Adrenoceptors mediated albuterol-induced bronchoprotection in mice. Chronic treatment with albuterol induced loss of bronchoprotection, associated with exacerbation of the inflammatory components of the asthma phenotype.
This animal model reproduced salient features of human asthma and linked loss of bronchoprotection with airway pathobiology. Accordingly, the model offers an advanced tool for understanding the mechanisms of the effects of chronic β- agonist treatment on β-adrenoceptor function in asthma. Such information may guide the clinical use of β-agonists and provide insight into development of novel β-adrenoceptor ligands for the treatment of asthma.
PMCID: PMC3413869  PMID: 22013997
β-adrenoceptor; β-agonist; receptor desensitization; airway remodelling; airway inflammation; asthma; loss of bronchoprotection; mouse
11.  Airway Fibroblasts in Asthma Manifest an Invasive Phenotype 
Rationale: Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMPs). IL-13 is a key TH2 cytokine that directs many features of airway remodeling through TGF-β1 and MMPs.
Objectives: We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-β1 and MMPs in asthma compared with normal controls.
Methods: Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV1: 90 ± 3.6% pred) and 17 normal control subjects (FEV1: 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-β1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels.
Measurements and Main Results: IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-β1 and MMPs blocked IL-13–induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects.
Conclusions: IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-β1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13–directed airway remodeling in asthma.
PMCID: PMC3136991  PMID: 21471104
airway remodeling; interleukin-13; transforming growth factor-β; matrix metalloproteinase
12.  Nitric Oxide Mediates Relative Airway Hyporesponsiveness to Lipopolysaccharide in Surfactant Protein A–Deficient Mice 
Surfactant protein A (SP-A) mediates innate immune cell responses to LPS, a cell wall component of gram-negative bacteria that is found ubiquitously in the environment and is associated with adverse health effects. Inhaled LPS induces lung inflammation and increases airway responsiveness (AR). However, the role of SP-A in mediating LPS-induced AR is not well-defined. Nitric oxide (NO) is described as a potent bronchodilator, and previous studies showed that SP-A modulates the LPS-induced production of NO. Hence, we tested the hypothesis that increased AR, observed in response to aerosolized LPS exposure, would be significantly reduced in an SP-A–deficient condition. Wild-type (WT) and SP-A null (SP-A−/−) mice were challenged with aerosolized LPS. Results indicate that despite similar inflammatory indices, LPS-treated SP-A−/− mice had attenuated AR after methacholine challenge, compared with WT mice. The attenuated AR could not be attributed to inherent differences in SP-D concentrations or airway smooth muscle contractile and relaxation properties, because these measures were similar between WT and SP-A−/− mice. LPS-treated SP-A−/− mice, however, had elevated nitrite concentrations, inducible nitric oxide synthase (iNOS) expression, and NOS activity in their lungs. Moreover, the administration of the iNOS-specific inhibitor 1400W completely abrogated the attenuated AR. Thus, when exposed to aerosolized LPS, SP-A−/− mice demonstrate a relative airway hyporesponsiveness that appears to be mediated at least partly via an iNOS-dependent mechanism. These findings may have clinical significance, because recent studies reported associations between surfactant protein polymorphisms and a variety of lung diseases.
PMCID: PMC3049231  PMID: 20348208
surfactant protein A; lipopolysaccharide; airway responsiveness
13.  Developmental Regulation of p66Shc Is Altered by Bronchopulmonary Dysplasia in Baboons and Humans 
Rationale: The p66Shc adapter protein antagonizes mitogen-activated protein, or MAP, kinase, mediates oxidative stress, and is developmentally regulated in fetal mouse lungs. Objectives: To determine if p66Shc is similarly regulated in primates and in bronchopulmonary dysplasia (BPD), which results from oxidative injury to immature lungs. Methods: Normal and injured lungs from humans and baboons were evaluated by Western analysis and immunohistochemistry. Measurements and Main Results: In baboons, p66Shc decreased 80% between 125 and 175 days' gestation (p = 0.025), then doubled after term delivery at 185 days (p = 0.0013). In the hyperoxic 140-day fetal baboon BPD model, p66Shc expression persisted, and its localization shifted from the epithelium of gestational controls to the mesenchyme of diseased lungs, coincident with expression of proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase, a marker of apoptosis. Treatment with the antibombesin antibody 2A11 attenuated BPD, reduced cell proliferation, increased p66Shc expression 10.5-fold, and preserved epithelial p66Shc localization. p66Shc also decreased during normal human lung development, falling 87% between 18 and 24 weeks' gestation (p = 0.02). p66Shc was expressed throughout 18-week human lungs, became restricted to scattered epithelial cells by 24 weeks, and localized to isolated mesenchymal cells after term delivery. In contrast, p66Shc remained prominent in the epithelium of lungs with acute injury or mild BPD, and in the mesenchyme of lungs with severe disease. p66Shc localized to tissues expressing proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase. Conclusions: p66Shc expression, cell proliferation, and apoptosis are concomitantly altered during lung development and in BPD.
PMCID: PMC2718481  PMID: 15778491
fetal development; lung; MAP kinases; ShcA protein

Results 1-13 (13)