PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Cross-Linking CD98 Promotes Integrin-like Signaling and Anchorage-independent Growth 
Molecular Biology of the Cell  2002;13(8):2841-2852.
CD98, an early marker of T-cell activation, is an important regulator of integrin-mediated adhesion events. Previous studies suggest that CD98 is coupled to both cellular activation and transformation and is involved in the pathogenesis of viral infection, inflammatory disease, and cancer. Understanding of the molecular mechanisms underlying CD98 activity may have far-reaching practical applications in the development of novel therapeutic strategies in these disease states. Using small cell lung cancer cell lines, which are nonadherent, nonpolarized, and highly express CD98, we show that, in vitro, under physiological conditions, CD98 is constitutively associated with β1 integrins regardless of activation status. Cross-linking CD98 with the monoclonal antibody 4F2 stimulated phosphatidylinositol (PI) 3-kinase, PI(3,4,5)P3, and protein kinase B in the absence of integrin ligation or extracellular matrix engagement. Furthermore, cross-linking CD98 promoted anchorage-independent growth. Using fibroblasts derived from β1 integrin null stem cells (GD25), wild-type GD25β1, or GD25 cells expressing a mutation preventing β1 integrin-dependent FAK phosphorylation, we demonstrate that a functional β1 integrin is required for CD98 signaling. We propose that by cross-linking CD98, it acts as a “molecular facilitator” in the plasma membrane, clustering β1 integrins to form high-density complexes. This results in integrin activation, integrin-like signaling, and anchorage-independent growth. Activation of PI 3-kinase may, in part, explain cellular transformation seen on overexpressing CD98. These results may provide a paradigm for events involved in such diverse processes as inflammation and viral-induced cell fusion.
doi:10.1091/mbc.01-11-0530
PMCID: PMC117946  PMID: 12181350
2.  Suitability of EBUS-TBNA Specimens for Subtyping and Genotyping of NSCLC: A Multi-Centre Study of 774 Patients 
Rationale
The current management of advanced non-small cell lung cancer (NSCLC) requires differentiation between squamous and non-squamous sub-types as well as epidermal growth factor receptor (EGFR) mutation status. Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is increasingly used for the diagnosis and staging of lung cancer. However, it is unclear whether cytology specimens obtained with EBUS-TBNA are suitable for the sub-classification and genotyping of NSCLC.
Objectives
To determine whether cytology specimens obtained from EBUS-TBNA in routine practice are suitable for phenotyping and genotyping of NSCLC.
Methods
Cytological diagnoses from EBUS-TBNA were recorded from 774 patients with known or suspected lung cancer across 5 centres in the United Kingdom between 2009 and 2011.
Measurements and Main Results
The proportion of patients with a final diagnosis by EBUS-TBNA in whom subtype was classified was 77% (95% CI 73% - 80%). The rate of NSCLC not otherwise specified (NSCLC-NOS) was significantly reduced in patients who underwent immunohistochemistry (adjusted OR 0.50 95% CI 0.28 – 0.82, P=0.016). EGFR mutation analysis was possible in 107 (90%) of the 119 patients in whom mutation analysis was requested. The sensitivity, negative predictive value and diagnostic accuracy of EBUS-TBNA in patients with NSCLC was 88% (95% CI 86% - 91%), 72% (95% CI 66% - 77%) and 91% (95% CI 89% - 93%) respectively.
Conclusions
This large multi-centre pragmatic study demonstrates that cytology samples obtained from EBUS-TBNA in routine practice are suitable for sub-typing of NSCLC and EGFR mutation analysis and that use of immunohistochemistry reduces the rate of NSCLC-NOS.
doi:10.1164/rccm.201202-0294OC
PMCID: PMC3378660  PMID: 22505743
Endobronchial ultrasound; non-small cell lung cancer; adenocarcinoma; EGFR mutation; squamous cell carcinoma; NSCLC-NOS
3.  Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration for the Diagnosis of Intrathoracic Lymphadenopathy in Patients with Extrathoracic Malignancy 
Introduction
Mediastinal lymphadenopathy in patients with an extrathoracic malignancy is a common clinical scenario. Invasive sampling of intrathoracic lymph nodes may be performed by mediastinoscopy or endoscopic ultrasound-guided fine needle aspiration. Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is an alternative to mediastinoscopy and endoscopic ultrasound in patients with lung cancer and sarcoidosis. The utility of EBUS-TBNA in patients with extrathoracic malignancy was evaluated.
Methods
Consecutive patients who were suspected to have intrathoracic lymph node metastases from an extrathoracic malignancy underwent EBUS-TBNA. When EBUS-TBNA did not provide a specific diagnosis, patients underwent mediastinoscopy or clinical follow-up of at least 6 months duration.
Results
One hundred sixty-one patients meeting the inclusion criteria underwent EBUS-TBNA in five UK centers over a 3-year period. EBUS-TBNA diagnosed mediastinal or hilar metastases in 71 (44%) patients, new lung cancer in 20 (12%) patients, and sarcoidosis in 14 (9%) patients. The sensitivity, negative predictive value for malignancy, and overall accuracy for EBUS-TBNA were 87%, 73% and 88%, respectively. One hundred ten (68%) patients in the study had a final diagnosis of malignant intrathoracic lymphadenopathy.
Conclusion
Because of the high prevalence of alternative diagnoses, pathological evaluation is important in patients with extrathoracic malignancy and suspected mediastinal or hilar lymph node metastases. EBUS-TBNA is a safe and sensitive technique and may be considered a first-line investigation in these patients.
doi:10.1097/JTO.0b013e318223c3fe
PMCID: PMC3361007  PMID: 21792077
Endobronchial ultrasound; Mediastinal lymphadenopathy; Breast cancer; Lung cancer
4.  Utility of endobronchial ultrasound-guided transbronchial needle aspiration in patients with tuberculous intrathoracic lymphadenopathy: a multicentre study 
Thorax  2011;66(10):889-893.
Background
Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has emerged as an important tool for the diagnosis and staging of lung cancer but its role in the diagnosis of tuberculous intrathoracic lymphadenopathy has not been established. The aim of this study was to describe the diagnostic utility of EBUS-TBNA in patients with intrathoracic lymphadenopathy due to tuberculosis (TB).
Methods
156 consecutive patients with isolated intrathoracic TB lymphadenitis were studied across four centres over a 2-year period. Only patients with a confirmed diagnosis or unequivocal clinical and radiological response to antituberculous treatment during follow-up for a minimum of 6 months were included. All patients underwent routine clinical assessment and a CT scan prior to EBUS-TBNA. Demographic data, HIV status, pathological findings and microbiological results were recorded.
Results
EBUS-TBNA was diagnostic of TB in 146 patients (94%; 95% CI 88% to 97%). Pathological findings were consistent with TB in 134 patients (86%). Microbiological investigations yielded a positive culture of TB in 74 patients (47%) with a median time to positive culture of 16 days (range 3–84) and identified eight drug-resistant cases (5%). Ten patients (6%) did not have a specific diagnosis following EBUS; four underwent mediastinoscopy which confirmed the diagnosis of TB while six responded to empirical antituberculous therapy. There was one complication requiring an inpatient admission.
Conclusions
EBUS-TBNA is a safe and effective first-line investigation in patients with tuberculous intrathoracic lymphadenopathy.
doi:10.1136/thoraxjnl-2011-200063
PMCID: PMC3361304  PMID: 21813622
5.  Two Novel Determinants of Etoposide Resistance in Small Cell Lung Cancer 
Cancer research  2011;71(14):4877-4887.
Patient survival in small cell lung cancer (SCLC) is limited by acquired chemoresistance. Here we report the use of a biologically relevant model to identify novel candidate genes mediating in vivo acquired resistance to etoposide. Candidate genes derived from a cDNA microarray analysis were cloned and transiently overexpressed to evaluate their potential functional roles. We identified two promising genes in the DNA repair enzyme DNA Polymerase β and in the neuroendocrine transcription factor NKX2.2. Specific inhibition of DNA Polymerase β reduced the numbers of cells surviving treatment with etoposide and increased the amount of DNA damage in cells. Conversely, stable overexpression of NKX2.2 increased cell survival in response to etoposide in SCLC cell lines. Consistent with these findings, we found that an absence of nuclear staining for NKX2.2 in SCLC primary tumors was an independent predictor of improved outcomes in chemotherapy-treated patients. Taken together, our findings justify future prospective studies to confirm the roles of these molecules in mediating chemotherapy resistance in SCLC.
doi:10.1158/0008-5472.CAN-11-0080
PMCID: PMC3145147  PMID: 21642373
DNA Polymerase β; Chemoresistance; Etoposide; NKX2.2; Small Cell Lung Cancer
6.  Phosphoinositide 3-kinase: a critical signalling event in pulmonary cells 
Respiratory Research  2000;1(1):24-29.
Phosphoinositide 3-kinases (PI-3Ks) are enzymes that generate lipid second messenger molecules, resulting in the activation of multiple intracellular signalling cascades. These events regulate a broad array of cellular responses including survival, activation, differentiation and proliferation and are now recognised to have a key role in a number of physiological and pathophysiological processes in the lung. PI-3Ks contribute to the pathogenesis of asthma by influencing the proliferation of airways smooth muscle and the recruitment of eosinophils, and affect the balance between the harmful and protective responses in pulmonary inflammation and infection by the modulation of granulocyte recruitment, activation and apoptosis. In addition they also seem to exert a critical influence on the malignant phenotype of small cell lung cancer. PI-3K isoforms and their downstream targets thus provide novel therapeutic targets for intervention in a broad spectrum of respiratory diseases.
doi:10.1186/rr8
PMCID: PMC59538  PMID: 11667961
airways smooth muscle; lung; phosphatidylinositol 3,4,5-trisphosphate; phosphoinositide 3-kinase; small cell lung cancer
7.  Suitability of Endobronchial Ultrasound-guided Transbronchial Needle Aspiration Specimens for Subtyping and Genotyping of Non–Small Cell Lung Cancer 
Rationale: The current management of advanced non–small cell lung cancer (NSCLC) requires differentiation between squamous and nonsquamous subtypes as well as epidermal growth factor receptor (EGFR) mutation status. Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is increasingly used for the diagnosis and staging of lung cancer. However, it is unclear whether cytology specimens obtained with EBUS-TBNA are suitable for the subclassification and genotyping of NSCLC.
Objectives: To determine whether cytology specimens obtained from EBUS-TBNA in routine practice are suitable for phenotyping and genotyping of NSCLC.
Methods: Cytological diagnoses from EBUS-TBNA were recorded from 774 patients with known or suspected lung cancer across five centers in the United Kingdom between 2009 and 2011.
Measurements and Main Results: The proportion of patients with a final diagnosis by EBUS-TBNA in whom subtype was classified was 77% (95% confidence interval [CI], 73–80). The rate of NSCLC not otherwise specified (NSCLC-NOS) was significantly reduced in patients who underwent immunohistochemistry (adjusted odds ratio, 0.50; 95% CI, 0.28–0.82; P = 0.016). EGFR mutation analysis was possible in 107 (90%) of the 119 patients in whom mutation analysis was requested. The sensitivity, negative predictive value, and diagnostic accuracy of EBUS-TBNA in patients with NSCLC were 88% (95% CI, 86–91), 72% (95% CI, 66–77), and 91% (95% CI, 89–93), respectively.
Conclusions: This large, multicenter, pragmatic study demonstrates that cytology samples obtained from EBUS-TBNA in routine practice are suitable for subtyping of NSCLC and EGFR mutation analysis and that the use of immunohistochemistry reduces the rate of NSCLC-NOS.
doi:10.1164/rccm.201202-0294OC
PMCID: PMC3378660  PMID: 22505743
endobronchial ultrasound; non–small cell lung cancer; adenocarcinoma; EGFR mutation; NSCLC-NOS

Results 1-7 (7)