PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Responsiveness to respiratory syncytial virus in neonates is mediated through thymic stromal lymphopoietin and OX40 ligand 
Background
Recent studies revealed a critical role for thymic stromal lymphopoietin (TSLP) released from epithelial cells and OX40 ligand (OX40L) expressed on dendritic cells (DCs) in TH2 priming and polarization.
Objectives
We sought to determine the importance of the TSLP-OX40L axis in neonatal respiratory syncytial virus (RSV) infection.
Methods
Mice were initially infected with RSV as neonates or adults and reinfected 5 weeks later. Anti-OX40L or anti-TSLP were administered during primary or secondary infection. Outcomes included assessment of airway function and inflammation and expression of OX40L, TSLP, and IL-12.
Results
OX40L was expressed mainly on CD11c+MHC class II (MHCII)+CD11b+ DCs but not CD103+ DCs. Treatment of neonates with OX40L antibody during primary RSV infection prevented the subsequent enhancement of airway hyperresponsiveness and the development of airway eosinophilia and mucus hyperproduction on reinfection. Administration of anti-TSLP before neonatal RSV infection reduced the accumulation of lung DCs, decreased OX40L expression on lung DCs, and attenuated the enhancement of airway responses after reinfection.
Conclusions
In mice initially infected as neonates, TSLP expression induced by RSV infection is an important upstream event that controls OX40L expression, lung DC migration, and TH2 polarization, accounting for the enhanced response on reinfection.
doi:10.1016/j.jaci.2012.08.033
PMCID: PMC3593657  PMID: 23036746
Respiratory syncytial virus; OX40 ligand; thymic stromal lymphopoietin
2.  Inhibition of Pim1 kinase prevents peanut allergy by enhancing Runx3 expression and suppressing TH2 and TH17 T-cell differentiation 
Background
The provirus integration site for Moloney murine leukemia virus (Pim) 1 kinase is an oncogenic serine/threonine kinase implicated in cytokine-induced cell signaling, whereas Runt-related transcription factor (Runx) has been implicated in the regulation of T-cell differentiation. The interaction of Pim1 kinase and Runx3 in the pathogenesis of peanut allergy has not been defined.
Objectives
We sought to determine the effects of Pim1 kinase modulation on Runx3 expression and TH2 and TH17 cell function in an experimental model of peanut allergy. Methods: A Pim1 kinase inhibitor was administered to peanut-sensitized and challenged wild-type and Runx3+/− mice. Symptoms, intestinal inflammation, and Pim1 kinase and Runx3 mRNA expression and protein levels were assessed. The effects of Pim1 kinase inhibition on TH1, TH2, and TH17 differentiation in vivo and in vitro were also determined.
Results
Peanut sensitization and challenge resulted in accumulation of inflammatory cells and goblet cell metaplasia and increased levels of Pim1 kinase and TH2 and TH17 cytokine production but decreased levels of Runx3 mRNA and protein in the small intestines of wild-type mice. All of these findings were normalized with Pim1 kinase inhibition. In sensitized and challenged Runx3+/− mice, inhibition of Pim1 kinase had less effect on the development of the full spectrum of intestinal allergic responses. In vitro inhibition of Pim1 kinase attenuated TH2 and TH17 cell differentiation and expansion while maintaining Runx3 expression in T-cell cultures from wild-type mice; these effects were reduced in T-cell cultures from Runx3+/− mice.
Conclusion
These data support a novel regulatory axis involving Pim1 kinase and Runx3 in the control of food-induced allergic reactions through the regulation of TH2 and TH17 differentiation.
doi:10.1016/j.jaci.2012.07.032
PMCID: PMC3652680  PMID: 22944483
Pim1 kinase; Runx3; peanut; intestinal allergy; TH2; TH17
3.  The Critical Role of Complement Alternative Pathway Regulator Factor H in Allergen-Induced Airway Hyperresponsiveness (AHR) and Inflammation 
Activation of the alternative pathway of complement plays a critical role in the development of allergen-induced airway hyperresponsiveness (AHR) and inflammation in mice. Endogenous factor H, a potent inhibitor of the alternative pathway, is increased in the airways of sensitized and challenged mice, but its role in regulating inflammation or AHR has been unknown. We found that blocking the tissue-binding function of factor H with a competitive antagonist increased complement activation and tissue inflammation after allergen challenge of sensitized mice. Conversely, administration of a fusion protein that contains the iC3b/C3d binding region of complement receptor 2 (CR2) linked to the inhibitory region of factor H (CR2-fH), a molecule directly targeting complement activating surfaces, protected mice in both primary and secondary challenge models of AHR and lung inflammation. Thus, although endogenous factor H does play a role in limiting the development of AHR, strategies to deliver the complement regulatory region of factor H specifically to the site of inflammation provide greater protection than that afforded by endogenous regulators. Such an agent may be an effective therapy for the treatment of asthma.
doi:10.4049/jimmunol.1101813
PMCID: PMC3253223  PMID: 22174452
Alternative pathway; factor H; airway hyperresponsiveness; inflammation
4.  Low-Dose Lipopolysaccharide Affects Lung Allergic Responses by Regulating Jagged1 Expression on Antigen-Pulsed Dendritic Cells 
Background
Notch signaling pathways govern immune function and the regulation of Th1 and Th2 differentiation. We previously demonstrated essential interactions between Notch on CD4+ T cells and Jagged1 on antigen-presenting cells in Th2 differentiation for the full development of allergen-induced airway hyperresponsiveness (AHR) and allergic airway inflammation.
Methods
Bone marrow-derived dendritic cells (BMDCs) were differentiated and incubated with different preparations of ovalbumin (OVA), including lipopolysaccharide (LPS)-depleted and LPS-spiked preparations. In some experiments recipient mice also received soluble Jagged1-Fc in addition to allergen-pulsed BMDCs. Ten days following transfer of BMDCs, mice were exposed to three airway challenges with OVA, and airway responsiveness to inhaled methacholine, airway inflammation and cytokine production were monitored 48 h later. Notch ligand expression was assessed by real-time PCR.
Results
Induction of Jagged1 expression on antigen-pulsed BMDCs was dependent on low-dose endotoxin. In vivo, transfer of endotoxin-free, antigen-pulsed BMDCs failed to induce AHR or airway eosinophilia on allergen challenge. However, administration of exogenous Jagged1-Fc together with endotoxin-free, allergen-pulsed BMDCs fully restored the responses to allergen challenge.
Conclusions
These data demonstrate that LPS regulates the expression of Jagged1 on BMDCs, which is essential for the full development of lung allergic responses.
doi:10.1159/000324836
PMCID: PMC3180653  PMID: 21912175
Asthma; Dendritic cells; Endotoxin; Notch ligands
5.  Montelukast during Primary Infection Prevents Airway Hyperresponsiveness and Inflammation after Reinfection with Respiratory Syncytial Virus 
Rationale: Respiratory syncytial virus (RSV) bronchiolitis in infants may be followed by the development of asthma-like symptoms. Age at first infection dictates consequences upon reinfection. Reinfection of mice initially exposed as neonates to RSV enhanced development of airway hyperresponsiveness (AHR), eosinophilic inflammation, and mucus hyperproduction. RSV lower respiratory tract disease is associated with activation of the leukotriene pathway.
Objectives: To determine the effects of montelukast (MK), a cysteinyl leukotriene (cysLT) receptor antagonist, in primary and secondary RSV-infected newborn and adult mice.
Methods: BALB/c mice were infected with RSV at 1 week (neonate) or 6 to 8 weeks (adult) of age and reinfected 5 weeks later. MK was administered 1 day before the initial infection and through Day 6 after infection. Seven days after primary or secondary infection, airway function was assessed by lung resistance to increasing doses of inhaled methacholine; lung inflammation, goblet cell metaplasia, and cytokine levels in bronchoalveolar lavage fluid were monitored.
Measurements and Main Results: RSV infection induced cysLT release in bronchoalveolar lavage fluid. MK decreased RSV-induced AHR, airway inflammation, and increased IFN-γ production in primary infected adult and neonatal mice. MK, administered during initial infection of neonates but not during secondary infection, prevented subsequent enhancement of AHR, airway eosinophilia, and mucus hyperproduction upon reinfection.
Conclusions: MK attenuated the initial responses to primary RSV infection in both age groups and altered the consequences of RSV reinfection in mice initially infected as neonates. These data support an important role for cysLT in RSV-induced AHR and inflammation.
doi:10.1164/rccm.200912-1811OC
PMCID: PMC2937239  PMID: 20442434
airway; inflammation; RSV; cysteinyl leukotrienes
6.  Peanut-Induced Intestinal Allergy is Mediated Through a Mast Cell-IgE-FcεRI-IL-13 Pathway 
BACKGROUND
Although implicated in the disease, the specific contributions of FcεRI and IL-13 to the pathogenesis of peanut-induced intestinal allergy are not well defined.
OBJECTIVES
To determine the contributions of FcεRI, IL-13, and mast cells to the development of intestinal mucosal responses in a mouse model of peanut-induced intestinal allergy.
METHODS
Sensitized wild-type (WT), FcεRI-deficient (FcεRI−/−), and mast cell-deficient (KitW-sh/W-sh) mice received peanut orally every day for 1 week. Bone marrow-derived mast cells (BMMC) from WT, FcεRI−/−, IL- 4−/−, IL-13−/−, and IL- 4/IL-13−/− mice were differentiated and transferred into WT, FcεRI−/−, and KitW-sh/W-sh recipients. BMMC from WT and UBI-GFP/BL6 mice were differentiated and transferred into WT and KitW-sh/W-sh mice. Blockade of IL-13 was achieved using IL- 13Ra2-IgG fusion protein.
RESULTS
FcεRI−/− mice showed decreased intestinal inflammation (mast cell and eosinophil numbers) and goblet cell metaplasia, and reduced levels of IL-4, IL-6, IL-13, and IL-17A mRNA expression in the jejunum. Transfer of WT BMMC to FcεRI−/− recipients restored their ability to develop intestinal allergic responses compared to transfer of FcεRI−/−, IL-13−/−, or IL-4/IL-13−/−BMMC. FcεRI−/− mice exhibited lower IL-13 levels and treatment of WT mice with IL-13Rα2 prevented peanut-induced intestinal allergy and inflammation.
CONCLUSIONS
These data indicate that the development of peanut-induced intestinal allergy is mediated through a mast cell-dependent, IgE-FcεRI-IL-13 pathway. Targeting IL-13 may be a potential treatment for IgE-mediated peanut allergic responses in the intestine.
doi:10.1016/j.jaci.2010.05.017
PMCID: PMC2917491  PMID: 20624645
Peanut; intestinal allergy; mast cell; IgE; FcεRI; IL-13
7.  CD8 Regulates T Regulatory Cell Production of IL-6 and Maintains Their Suppressive Phenotype in Allergic Lung Disease 
Naturally occurring CD4+CD25+Foxp3+ T regulatory cells (nTregs) regulate lung allergic responses through production of IL-10 and TGF-β. nTregs from CD8−/− mice failed to suppress lung allergic responses and were characterized by reduced levels of Foxp3, IL-10, and TGF-β, and high levels of IL-6. Administration of anti–IL-6 or anti–IL-6R to wild-type recipients prior to transfer of CD8−/− nTregs restored suppression. nTregs from IL-6−/− mice were suppressive, but lost this capability if incubated with IL-6 prior to transfer. The importance of CD8 in regulating the production of IL-6 in nTregs was demonstrated by the loss of suppression and increases in IL-6 following transfer of nTregs from wild-type donors depleted of CD8+ cells. Transfer of nTregs from CD8−/− donors reconstituted with CD8+ T cells was suppressive, and accordingly, IL-6 levels were reduced. These data identify the critical role of CD8–T regulatory cell interactions in regulating the suppressive phenotype of nTregs through control of IL-6 production.
doi:10.4049/jimmunol.1001663
PMCID: PMC3127584  PMID: 21115736
8.  Leukotriene B4 Release from Mast Cells in IgE-Mediated Airway Hyperresponsiveness and Inflammation 
Previous studies have shown that leukotriene B4 (LTB4), a proinflammatory lipid mediator, is linked to the development of airway hyperresponsiveness through the accumulation of IL-13–producing CD8+ T cells, which express a high affinity receptor for LTB4, BLT1 (Miyahara et al., Am J Respir Crit Care Med 2005;172:161–167; J Immunol 2005;174:4979–4984). By using leukotriene A4 hydrolase–deficient (LTA4H−/−) mice, which fail to synthesize LTB4, we determined the role of this lipid mediator in allergen-induced airway responses. Two approaches were used. In the first, LTA4H−/− mice and wild-type (LTA4H+/+) mice were systemically sensitized and challenged via the airways to ovalbumin. In the second, mice were passively sensitized with anti-ovalbumin IgE and exposed to ovalbumin via the airways. Mast cells were generated from bone marrow of LTA4H+/+ mice or LTA4H−/− mice. After active sensitization and challenge, LTA4H−/− mice showed significantly lower airway hyperresponsiveness compared with LTA4H+/+ mice, and eosinophil numbers and IL-13 levels in the bronchoalveoloar lavage of LTA4H−/− mice were also significantly lower. LTA4H−/− mice also showed decreased airway reactivity after passive sensitization and challenge. After LTA4H+/+ mast cell transfer, LTA4H−/− mice showed increased airway reactivity after passive sensitization and challenge, but not after systemic sensitization and challenge. These data confirm the important role for LTB4 in the development of altered airway responses and suggest that LTB4 secretion from mast cells is critical to eliciting increased airway reactivity after passive sensitization with allergen-specific IgE.
doi:10.1165/rcmb.2008-0095OC
PMCID: PMC2689918  PMID: 19029019
rodent; T cells; cytokines; lipid mediators; lung
9.  Vγ1+ T Cells and Tumor Necrosis Factor-Alpha in Ozone-Induced Airway Hyperresponsiveness 
γδ T cells regulate airway reactivity, but their role in ozone (O3)-induced airway hyperresponsiveness (AHR) is not known. Our objective was to determine the role of γδ T cells in O3-induced AHR. Different strains of mice, including those that were genetically manipulated or antibody-depleted to render them deficient in total γδ T cells or specific subsets of γδ T cells, were exposed to 2.0 ppm of O3 for 3 hours. Airway reactivity to inhaled methacholine, airway inflammation, and epithelial cell damage were monitored. Exposure of C57BL/6 mice to O3 resulted in a transient increase in airway reactivity, neutrophilia, and increased numbers of epithelial cells in the lavage fluid. TCR-δ−/− mice did not develop AHR, although they exhibited an increase in neutrophils and epithelial cells in the lavage fluid. Similarly, depletion of γδ T cells in wild-type mice suppressed O3-induced AHR without influencing airway inflammation or epithelial damage. Depletion of Vγ1+, but not of Vγ4+ T cells, reduced O3-induced AHR, and transfer of total γδ T cells or Vγ1+ T cells to TCR-δ−/− mice restored AHR. After transfer of Vγ1+ cells to TCR-δ−/− mice, restoration of AHR after O3 exposure was blocked by anti–TNF-α. However, AHR could be restored in TCR-δ−/−mice by transfer of γδ T cells from TNF-α–deficient mice, indicating that another cell type was the source of TNF-α. These results demonstrate that TNF-α and activation of Vγ1+ γδ T cells are required for the development of AHR after O3 exposure.
doi:10.1165/rcmb.2008-0346OC
PMCID: PMC2660562  PMID: 18927346
ozone; airway responsiveness; γδ T cells; TNF-α
10.  Essential role of Notch signaling in effector memory CD8+ T cell–mediated airway hyperresponsiveness and inflammation 
The Journal of Experimental Medicine  2008;205(5):1087-1097.
Adoptive transfer of in vivo–primed CD8+ T cells or in vitro–generated effector memory CD8+ T (TEFF) cells restores airway hyperresponsiveness (AHR) and airway inflammation in CD8-deficient (CD8−/−) mice. Examining transcription levels, there was a strong induction of Notch1 in TEFF cells compared with central memory CD8+ T cells. Treatment of TEFF cells with a γ-secretase inhibitor (GSI) strongly inhibited Notch signaling in these cells, and after adoptive transfer, GSI-treated TEFF cells failed to restore AHR and airway inflammation in sensitized and challenged recipient CD8−/− mice, or to enhance these responses in recipient wild-type (WT) mice. These effects of GSI were also associated with increased expression of the Notch ligand Delta1 in TEFF cells. Treatment of sensitized and challenged WT mice with Delta1-Fc resulted in decreased AHR and airway inflammation accompanied by higher levels of interferon γ in bronchoalveolar lavage fluid. These results demonstrate a role for Notch in skewing the T cell response from a T helper (Th)2 to a Th1 phenotype as a consequence of the inhibition of Notch receptor activation and the up-regulation of the Notch ligand Delta1. These data are the first to show a functional role for Notch in the challenge phase of CD8+ T cell–mediated development of AHR and airway inflammation, and identify Delta1 as an important regulator of allergic airway inflammation.
doi:10.1084/jem.20072200
PMCID: PMC2373841  PMID: 18426985
11.  IL-2 and IL-18 Attenuation of Airway Hyperresponsiveness Requires STAT4, IFN-γ, and Natural Killer Cells 
IL-18 is known to induce IFN-γ production, which is enhanced when combined with IL-2. In the present study, we investigated whether the combination of exogenous IL-2 and IL-18 alters airway hyperresponsiveness (AHR) and airway inflammation. Sensitized mice exposed to ovalbumin (OVA) challenge developed AHR, inflammatory cells in the bronchoalveolar lavage (BAL) fluid, and increases in levels of Th2 cytokines and goblet cell numbers. The combination of IL-2 and IL-18, but neither alone, prevented these changes while increasing levels of IL-12 and IFN-γ. The combination of IL-2 and IL-18 was ineffective in IFN-γ–deficient and signal transducer and activator of transcription (STAT)4-deficient mice. Flow cytometry analysis showed significant increases in numbers of IFN-γ–positive natural killer (NK) cells in the lung after treatment with the combination therapy, and transfer of lung NK cells isolated from sensitized and challenged mice treated with the combination significantly suppressed AHR and BAL eosinophilia. These data demonstrate that the combination of IL-2 and IL-18 prevents AHR and airway inflammation, likely through IL-12–mediated induction of IFN-γ production in NK cells.
doi:10.1165/rcmb.2006-0231OC
PMCID: PMC1899318  PMID: 17038663
IL-2; IL-18; STAT4; IFN-γ; airway hyperresponsiveness

Results 1-11 (11)