PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report 
The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.
doi:10.1164/rccm.201306-1141WS
PMCID: PMC3983890  PMID: 24160862
idiopathic pulmonary fibrosis; alveolar epithelial cells; extracellular matrix; interstitial lung disease; inflammation
2.  Comprehensive assessment of the long-term safety of pirfenidone in patients with idiopathic pulmonary fibrosis 
Respirology (Carlton, Vic.)  2014;19(5):740-747.
Background and objective
Pirfenidone is an oral antifibrotic agent that is approved in several countries for the treatment of idiopathic pulmonary fibrosis (IPF). We performed a comprehensive analysis of safety across four clinical trials evaluating pirfenidone in patients with IPF.
Methods
All patients receiving pirfenidone 2403 mg/day in the Phase 3 CAPACITY studies (Studies 004 and 006) and all patients receiving at least one dose of pirfenidone in one of two ongoing open-label studies in patients with IPF (Studies 002 and 012) were selected for inclusion. Safety outcomes were evaluated from baseline until 28 days after the last dose of study drug.
Results
A total of 789 patients were included in the analysis. The median duration of exposure to pirfenidone was 2.6 years (range, 1 week–7.7 years), and the cumulative total exposure was 2059 person exposure years (PEY). Gastrointestinal and skin-related events were the most commonly reported adverse events; these were almost always mild to moderate in severity, and rarely led to treatment discontinuation. Elevations (>3× upper limit of normal) in alanine aminotransferase (ALT) or aspartate aminotransferase (AST) occurred in 21/789 (2.7%) patients; the adjusted incidence of AST/ALT elevations was 1.7 per 100 PEY.
Conclusions
This comprehensive analysis of safety in a large cohort of IPF patients receiving pirfenidone for a total of 2059 PEY demonstrates that long-term treatment with pirfenidone is safe and generally well tolerated.
doi:10.1111/resp.12297
PMCID: PMC4230393  PMID: 24836849
adverse event; idiopathic pulmonary fibrosis; pirfenidone; safety; treatment
3.  Familial and sporadic idiopathic pulmonary fibrosis: making the diagnosis from peripheral blood 
BMC Genomics  2014;15(1):902.
Background
Peripheral blood biomarkers might improve diagnostic accuracy for idiopathic pulmonary fibrosis (IPF).
Results
Gene expression profiles were obtained from 89 patients with IPF and 26 normal controls. Samples were stratified according to severity of disease based on pulmonary function. The stratified dataset was split into subsets; two-thirds of the samples were selected to comprise the training set, while one-third was reserved for the validation set. Bayesian probit regression was used on the training set to develop a gene expression model for IPF versus normal. The gene expression model was tested by using it on the validation set to perform class prediction. Unsupervised clustering failed to discriminate between samples of different severity. Therefore, samples of all severities were included in the training and validation sets, in equal proportions. A gene signature model was developed from the training set. The model was built in an iterative fashion with the number of gene features selected to minimize the misclassification error in cross validation. The final model was based on the top 108 discriminating genes in the training set. The signature was successfully applied to the validation set, ROC area under the curve = 0.893, p < 0.0001. Using the optimal threshold (0.74) accurate class predictions were made for 77% of the test cases with sensitivity = 0.70, specificity = 1.00.
Conclusions
By using Bayesian probit regression to develop a model, we show that it is entirely possible to make a diagnosis of IPF from the peripheral blood with gene signatures.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-902) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-902
PMCID: PMC4288625  PMID: 25318837
IPF; FIP; gene signature; Bayesian probit regression
4.  Airway Epithelial Progenitors Are Region Specific and Show Differential Responses to Bleomycin-Induced Lung Injury 
Stem cells (Dayton, Ohio)  2012;30(9):1948-1960.
Mechanisms that regulate regional epithelial cell diversity and pathologic remodeling in airways are poorly understood. We hypothesized that regional differences in cell composition and injury-related tissue remodeling result from the type and composition of local progenitors. We used surface markers and the spatial expression pattern of an SFTPC-GFP transgene to subset epithelial progenitors by airway region. Green fluorescent protein (GFP) expression ranged from undetectable to high in a proximal-to-distal gradient. GFPhi cells were subdivided by CD24 staining into alveolar (CD24neg) and conducting airway (CD24low) populations. This allowed for the segregation of three types of progenitors displaying distinct clonal behavior in vitro. GFPneg and GFPlow progenitors both yielded lumen containing colonies but displayed transcriptomes reflective of pseudostratified and distal conducting airways, respectively. CD24lowGFPhi progenitors were present in an overlapping distribution with GFPlow progenitors in distal airways, yet expressed lower levels of Sox2 and expanded in culture to yield undifferentiated self-renewing progeny. Colony-forming ability was reduced for each progenitor cell type after in vivo bleomycin exposure, but only CD24lowGFPhi progenitors showed robust expansion during tissue remodeling. These data reveal intrinsic differences in the properties of regional progenitors and suggest that their unique responses to tissue damage drive local tissue remodeling. Disclosure of potential conflicts of interest is found at the end of this article.
doi:10.1002/stem.1150
PMCID: PMC4083019  PMID: 22696116
Regional; Progenitor; Epithelium; Lung; Bleomycin
5.  Pulmonary fibrosis: patterns and perpetrators 
The Journal of Clinical Investigation  2012;122(8):2756-2762.
Pulmonary fibrosis occurs in a variety of clinical settings, constitutes a major cause of morbidity and mortality, and represents an enormous unmet medical need. However, the disease is heterogeneous, and the failure to accurately discern between forms of fibrosing lung diseases leads to inaccurate treatments. Pulmonary fibrosis occurring in the context of connective tissue diseases is often characterized by a distinct pattern of tissue pathology and may be amenable to immunosuppressive therapies. In contrast, idiopathic pulmonary fibrosis (IPF) is a progressive and lethal form of fibrosing lung disease that is recalcitrant to therapies that target the immune system. Although animal models of fibrosis imperfectly recapitulate IPF, they have yielded numerous targets for therapeutic intervention. Understanding the heterogeneity of these diseases and elucidating the final common pathways of fibrogenesis are critical for the development of efficacious therapies for severe fibrosing lung diseases.
doi:10.1172/JCI60323
PMCID: PMC3408732  PMID: 22850886
6.  Take a deep breath: pulmonary research inspires 
The Journal of Clinical Investigation  2012;122(8):2722-2723.
The lung is a complex organ with multiple functions; in addition to facilitating gas exchange, it also serves as the first line of defense against inhaled environmental pathogens and toxins. Given these critical roles, disruption of normal cell function or cell-cell interactions can have devastating health consequences. The articles of this Review Series highlight recent progress in understanding the pathophysiology of several pulmonary diseases and suggest how these insights are leading to the development of new therapeutic strategies.
doi:10.1172/JCI65404
PMCID: PMC3408760  PMID: 22850881
7.  Recruited Exudative Macrophages Selectively Produce CXCL10 after Noninfectious Lung Injury 
The chemokine, CXCL10, and its cognate receptor, CXCR3, are important mediators of the pathobiology of lung fibrosis. Macrophages are a known source of CXCL10, but their specific source in the lung is poorly defined due to incomplete characterization of macrophage subpopulations. We recently developed a novel flow cytometric approach that discriminates resident alveolar macrophages from recruited exudative macrophages (ExMacs) after infectious lung injury. We hypothesized that ExMacs are present after noninfectious lung injury with bleomycin, and are a source of CXCL10. We found that ExMacs are recruited to the lung after injury, peaking at Day 7, then maintained through Day 28. ExMac recruitment was significantly reduced, but not abolished, in CCR2 null mice. ExMacs, but not alveolar macrophages, produce CXCL10, both constitutively and after stimulation with hyaluronan (HA) fragments. Interestingly, ExMac stimulation with LPS resulted in complete suppression of CXCL10. In contrast, ExMacs produced TNF-α and CXCL2/MIP-2 (Macrophage Inflammatory Protein-2) after stimulation with both HA and LPS. ExMacs were present in CXCR3 null mice after bleomycin, but produced minimal CXCL10. This impairment was overcome by administration of exogenous IFN-γ or IFN-γ with HA. Collectively, these data suggest that ExMacs are recruited and maintained in the lung after noninfectious lung injury, are a source of a variety of cytokines, but importantly, are essential for the production of antifibrotic CXCL10. Understanding the contribution of ExMacs to the pathobiology of lung injury and repair could lead to new treatment options for fibrosing lung diseases.
doi:10.1165/rcmb.2010-0471OC
PMCID: PMC3208617  PMID: 21330464
macrophage; bleomycin; pulmonary fibrosis; CXCR3; CXCL10
8.  The Role of Hyaluronan and Hyaluronan Binding Proteins in Human Asthma 
Background
The characteristics of human asthma are chronic inflammation and airway remodeling. Hyaluronan (HA), a major extracellular matrix component, accumulates during inflammatory lung diseases including asthma. Hyaluronan fragments stimulate macrophages to produce inflammatory cytokines. We hypothesized that HA and its receptors would play a role in human asthma.
Objective
To investigate the role of HA and HA binding proteins in human asthma.
Methods
Twenty-one subjects with asthma and 25 normal control subjects underwent bronchoscopy with endobronchial biopsy and bronchoalveolar lavage (BAL). Fibroblasts were cultured, HA and HA synthase expression was determined at baseline and after exposure to several mediators relevant to asthma pathobiology. The expression of HA binding proteins, CD44, TLR2 and TLR4 on BAL macrophages was determined by flow cytometry. IL-8 production by macrophages in response to HA fragment stimulation was compared.
Results
Airway fibroblasts from asthma patients produced significantly increased concentrations of lower molecular weight HA compared to those of normal fibroblasts. Hyaluronan synthase 2 mRNA was markedly increased in asthmatic fibroblasts. Asthmatic macrophages showed a decrease in cell surface CD44 expression and an increase in TLR2 and TLR4 expression. Macrophages from asthmatic subjects showed an increase in responsiveness to low molecular weight HA stimulation, as demonstrated by increased IL-8 production.
Conclusions
HA homeostasis is deranged in asthma with increased production by fibroblasts and decreased CD44 expression on alveolar macrophages. Upregulation of TLR2 and TLR4 on macrophages with increased sensitivity to HA fragments suggests a novel pro-inflammatory mechanism by which persistence of HA fragments could contribute to chronic inflammation and airway remodeling in asthma.
doi:10.1016/j.jaci.2011.04.006
PMCID: PMC3149736  PMID: 21570715
Asthma; Hyaluronan; Cytokines; Fibroblasts; Macrophages
9.  Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44 
The Journal of Experimental Medicine  2011;208(7):1459-1471.
Hyaluronan synthase 2 and CD44 are required for severe lung fibrosis in response to bleomycin.
Tissue fibrosis is a major cause of morbidity, and idiopathic pulmonary fibrosis (IPF) is a terminal illness characterized by unremitting matrix deposition in the lung. The mechanisms that control progressive fibrosis are unknown. Myofibroblasts accumulate at sites of tissue remodeling and produce extracellular matrix components such as collagen and hyaluronan (HA) that ultimately compromise organ function. We found that targeted overexpression of HAS2 (HA synthase 2) by myofibroblasts produced an aggressive phenotype leading to severe lung fibrosis and death after bleomycin-induced injury. Fibroblasts isolated from transgenic mice overexpressing HAS2 showed a greater capacity to invade matrix. Conditional deletion of HAS2 in mesenchymal cells abrogated the invasive fibroblast phenotype, impeded myofibroblast accumulation, and inhibited the development of lung fibrosis. Both the invasive phenotype and the progressive fibrosis were inhibited in the absence of CD44. Treatment with a blocking antibody to CD44 reduced lung fibrosis in mice in vivo. Finally, fibroblasts isolated from patients with IPF exhibited an invasive phenotype that was also dependent on HAS2 and CD44. Understanding the mechanisms leading to an invasive fibroblast phenotype could lead to novel approaches to the treatment of disorders characterized by severe tissue fibrosis.
doi:10.1084/jem.20102510
PMCID: PMC3135364  PMID: 21708929
10.  Hyaluronan as an Immune Regulator in Human Diseases 
Physiological reviews  2011;91(1):221-264.
Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on a variety of cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage by interacting with TLR2 and TLR4 on these parenchymal cells. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and stem cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases.
doi:10.1152/physrev.00052.2009
PMCID: PMC3051404  PMID: 21248167
11.  Regulation of Non-Infectious Lung Injury, Inflammation, and Repair by the Extracellular Matrix Glycosaminoglycan Hyaluronan 
An important hallmark of tissue remodeling is the dynamic turnover of extracellular matrix (ECM). ECM performs a variety of functions in tissue repair including scaffold formation, modulation of fluid dynamics, and regulating cell behavior. During non-infectious tissue injury ECM degradation products are generated that acquire signaling functions not attributable to the native precursor molecules. Hyaluronan (HA) is a non-sulfated glycosaminoglycan which is produced in great abundance following tissue injury. It exists both in a soluble form and as side chains on proteoglycans. HA has critical roles in development as well as a variety of biological processes including wound healing, tumor growth and metastasis, and inflammation. HA fragments share structural similarities with pathogens and following tissue injury can be recognized by innate immune receptors. Elucidating the protean roles of HA in tissue injury, inflammation, and repair will generate new insights into mechanisms of disease characterized by chronic inflammation and tissue remodeling.
doi:10.1002/ar.21102
PMCID: PMC2877145  PMID: 20186964
extracellular matrix; glycosaminoglycan; lung injury
12.  Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4 
The Journal of Clinical Investigation  2010;120(6):2049-2057.
Pulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4–null (Sdc4–/–) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4–/– mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis.
doi:10.1172/JCI38644
PMCID: PMC2877927  PMID: 20484822
13.  Type 2 alveolar cells are stem cells in adult lung 
The Journal of Clinical Investigation  2013;123(7):3025-3036.
Gas exchange in the lung occurs within alveoli, air-filled sacs composed of type 2 and type 1 epithelial cells (AEC2s and AEC1s), capillaries, and various resident mesenchymal cells. Here, we use a combination of in vivo clonal lineage analysis, different injury/repair systems, and in vitro culture of purified cell populations to obtain new information about the contribution of AEC2s to alveolar maintenance and repair. Genetic lineage-tracing experiments showed that surfactant protein C–positive (SFTPC-positive) AEC2s self renew and differentiate over about a year, consistent with the population containing long-term alveolar stem cells. Moreover, if many AEC2s were specifically ablated, high-resolution imaging of intact lungs showed that individual survivors undergo rapid clonal expansion and daughter cell dispersal. Individual lineage-labeled AEC2s placed into 3D culture gave rise to self-renewing “alveolospheres,” which contained both AEC2s and cells expressing multiple AEC1 markers, including HOPX, a new marker for AEC1s. Growth and differentiation of the alveolospheres occurred most readily when cocultured with primary PDGFRα+ lung stromal cells. This population included lipofibroblasts that normally reside close to AEC2s and may therefore contribute to a stem cell niche in the murine lung. Results suggest that a similar dynamic exists between AEC2s and mesenchymal cells in the human lung.
doi:10.1172/JCI68782
PMCID: PMC3696553  PMID: 23921127
14.  Long-Term Exposure of Chemokine CXCL10 Causes Bronchiolitis-like Inflammation 
Chemokines and chemokine receptors have been implicated in the pathogenesis of bronchiolitis. CXCR3 ligands (CXCL10, CXCL9, and CXCL11) were elevated in patients with bronchiolitis obliterans syndrome (BOS) and chronic allorejection. Studies also suggested that blockage of CXCR3 or its ligands changed the outcome of T-cell recruitment and airway obliteration. We wanted to determine the role of the chemokine CXCL10 in the pathogenesis of bronchiolitis and BOS. In this study, we found that CXCL10 mRNA levels were significantly increased in patients with BOS. We generated transgenic mice expressing a mouse CXCL10 cDNA under control of the rat CC10 promoter. Six-month-old CC10-CXCL10 transgenic mice developed bronchiolitis characterized by airway epithelial hyperplasia and developed peribronchiolar and perivascular lymphocyte infiltration. The airway hyperplasia and T-cell inflammation were dependent on the presence of CXCR3. Therefore, long-term exposure of the chemokine CXCL10 in the lung causes bronchiolitis-like inflammation in mice.
doi:10.1165/rcmb.2011-0116OC
PMCID: PMC3359901  PMID: 22162905
bronchiolitis; chemokine CXCL10; inflammation; airway inflammation
15.  Extracellular Matrix Protein Mindin is Required for the Complete Allergic Response to Fungal-Associated Proteinase 
Journal of allergy & therapy  2011;2011(Suppl 1):001.
Asthma remains an important cause of morbidity and mortality with an incidence that continues to rise. Despite the importance of this disease, the mechanisms by which the host develops allergic airways disease remain poorly understood. The development of allergic airways disease appears to be contingent on activation of both the innate and adaptive immune system, but little is known about the cross-talk between these two systems. The extracellular matrix protein mindin (Spondin 2) has been previously demonstrated to have functional roles in both the innate and adaptive immunological responses. Previous work supports that pulmonary challenge with fungal-associated allergenic proteinase (FAP) induces an innate allergic response. We hypothesized that mindin would modify the biological response to FAP. Saline or FAP was administered by oropharyngeal aspiration to C57BL/6 wild type or mindin-null mice every 4 days for a total of five exposures. FAP exposed C57BL/6 mice developed enhanced airway hyperresponsiveness (AHR) to methacholine challenge and increased neutrophils and eosinophils in the bronchoalveolar lavage as compared to saline exposed controls. These responses were significantly reduced in mindin-null mice exposed to FAP. FAP challenge was associated with a broad induction of cytokines (IL-1β, TNFα, Th1, Th2, and IL-17), chemokines, and growth factors, which were reduced in mindin-null mice exposed to FAP. RNA expression in lung monocytes for representative M1 and M2 activation markers were increased by FAP, but were independent of mindin. Our observations support that challenge with FAP results in activation of both innate and adaptive immune signaling pathways in a manner partially dependent on mindin. These findings suggest a potential role for the extracellular matrix protein mindin in cross-talk between the innate and adaptive immune systems.
doi:10.4172/2155-6121.S1-001
PMCID: PMC3613851  PMID: 23560245
Environment; Asthma; Reactive airways disease; Extracellular matrix; Allergy; Aspergillus
16.  miRNA-127 Inhibits Lung Inflammation by Targeting IgG Fcγ Receptor I 
The molecular mechanisms of acute lung injury are incompletely understood. MicroRNAs (miRNAs) are crucial biological regulators that act by suppressing their target genes and are involved in a variety of pathophysiologic processes. miR-127 appears to be down-regulated during lung injury. We set out to investigate the role of miR-127 in lung injury and inflammation. Expression of miR-127 significantly reduced cytokine release by macrophages. Looking into the mechanisms of regulation of inflammation by miR-127, we found that IgG Fcγ Receptor I (FcγRI/CD64) was a target of miR-127, as evidenced by reduced CD64 protein expression in macrophages over-expressing miR-127. Furthermore, miR-127 significantly reduced the luciferase activity with a reporter construct containing the native 3′-UTR of CD64. Importantly, we demonstrated that miR-127 attenuated lung inflammation in an IgG immune complex (IgG IC) model in vivo. Collectively, these data show that miR-127 targets macrophage CD64 expression and promotes the reduction of lung inflammation. Understanding how miRNAs regulate lung inflammation may represent an attractive way to control inflammation induced by infectious or non-infectious lung injury.
doi:10.4049/jimmunol.1101070
PMCID: PMC3288289  PMID: 22287715
17.  Surfactant Protein-D Regulates Effector Cell Function and Fibrotic Lung Remodeling in Response to Bleomycin Injury 
Rationale: Surfactant protein (SP)-D and SP-A have been implicated in immunomodulation in the lung. It has been reported that patients with idiopathic pulmonary fibrosis (IPF) often have elevated serum levels of SP-A and SP-D, although their role in the disease is not known.
Objectives: The goal of this study was to test the hypothesis that SP-D plays an important role in lung fibrosis using a mouse model of fibrosis induced by bleomycin (BLM).
Methods: Triple transgenic inducible SP-D mice (iSP-D mice), in which rat SP-D is expressed in response to doxycycline (Dox) treatment, were administered BLM (100 U/kg) or saline subcutaneously using miniosmotic pumps.
Measurements and Main Results: BLM-treated iSP-D mice off Dox (SP-D off) had increased lung fibrosis compared with mice on Dox (SP-D on). SP-D deficiency also increased macrophage-dominant cell infiltration and the expression of profibrotic cytokines (transforming growth factor [TGF]-β1, platelet-derived growth factor-AA). Alveolar macrophages isolated from BLM-treated iSP-D mice off Dox (SP-D off) secreted more TGF-β1. Fibrocytes, which are bone marrow–derived mesenchymal progenitor cells, were increased to a greater extent in the lungs of the BLM-treated iSP-D mice off Dox (SP-D off). Fibrocytes isolated from BLM-treated iSP-D mice off Dox (SP-D off) expressed more of the profibrotic cytokine TGF-β1 and more CXCR4, a chemokine receptor that is important in fibrocyte migration into the lungs. Exogenous SP-D administered intratracheally attenuated BLM-induced lung fibrosis in SP-D−/− mice.
Conclusions: These data suggest that alveolar SP-D regulates numbers of macrophages and fibrocytes in the lungs, profibrotic cytokine expression, and fibrotic lung remodeling in response to BLM injury.
doi:10.1164/rccm.201103-0561OC
PMCID: PMC3297103  PMID: 22198976
surfactant; lung fibrosis; macrophage; fibrocyte; growth factor
18.  Ozone Inhalation Promotes CX3CR1-dependent Maturation of Resident Lung Macrophages which Limit Oxidative Stress and Inflammation1, 2 
Inhalation of ambient ozone alters populations of lung macrophages. However, the impact of altered lung macrophage populations on the pathobiology of ozone is poorly understood. We hypothesized that sub-populations of macrophages modulate the response to ozone. We exposed C57BL/6 mice to ozone (2 ppm × 3h) or filtered air. 24 h after the exposure, the lungs were harvested and digested and the cells underwent flow cytometry. Analysis revealed a novel macrophage subset present in ozone exposed mice, which were distinct from resident alveolar macrophages (AM) and identified by enhanced Gr-1+ expression (Gr-1 Macs). Further analysis identified that Gr-1+ Macs exhibited high expression of MARCO, CX3CR1, and NQO1. Gr-1+ Macs were present in the absence of CCR2, suggesting that they were not derived from a CCR2-dependent circulating intermediate. Using PKH26-PCL to label resident phagocytic cells, we demonstrated that Gr-1 Macs were derived from resident lung cells. This new subset was diminished in the absence of CX3CR1. Interestingly, CX3CR1-null mice exhibited enhanced responses to ozone, including increased airway hyperresponsiveness (AHR), exacerbated neutrophil influx, accumulation of 8-isoprostanes and protein carbonyls, and increased expression of cytokines (CXCL2, IL-1β, IL-6, CCL2, and TNF-α). Our results identify a novel subset of lung macrophages, which are derived from a resident intermediate, dependent upon CX3CR1, and appear to protect the host from the biological response to ozone.
doi:10.4049/jimmunol.1101312
PMCID: PMC3197861  PMID: 21930959
19.  Regulation of pulmonary fibrosis by chemokine receptor CXCR3 
Journal of Clinical Investigation  2004;114(2):291-299.
CXC chemokine receptor 3 (CXCR3) is the receptor for the IFN-γ–inducible C-X-C chemokines MIG/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. CXCR3 is expressed on activated immune cells and proliferating endothelial cells. The role of CXCR3 in fibroproliferation has not been investigated. We examined the role of CXCR3 in pulmonary injury and repair in vivo. CXCR3-deficient mice demonstrated increased mortality with progressive interstitial fibrosis relative to WT mice. Increased fibrosis occurred without increased inflammatory cell recruitment. CXCR3 deficiency resulted in both a reduced early burst of IFN-γ production and decreased expression of CXCL10 after lung injury. We identified a relative deficiency in lung NK cells in the unchallenged CXCR3-deficient lung and demonstrated production of IFN-γ by WT lung NK cells in vivo following lung injury. The fibrotic phenotype in the CXCR3-deficient mice was significantly reversed following administration of exogenous IFN-γ or restoration of endogenous IFN-γ production by adoptive transfer of WT lymph node and spleen cells. Finally, pretreatment of WT mice with IFN-γ–neutralizing Ab’s enhanced fibrosis following lung injury. These data demonstrate a nonredundant role for CXCR3 in limiting tissue fibroproliferation and suggest that this effect may be mediated, in part, by the innate production of IFN-γ following lung injury.
doi:10.1172/JCI200416861
PMCID: PMC449741  PMID: 15254596
20.  Airway Fibroblasts in Asthma Manifest an Invasive Phenotype 
Rationale: Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMPs). IL-13 is a key TH2 cytokine that directs many features of airway remodeling through TGF-β1 and MMPs.
Objectives: We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-β1 and MMPs in asthma compared with normal controls.
Methods: Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV1: 90 ± 3.6% pred) and 17 normal control subjects (FEV1: 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-β1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels.
Measurements and Main Results: IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-β1 and MMPs blocked IL-13–induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects.
Conclusions: IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-β1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13–directed airway remodeling in asthma.
doi:10.1164/rccm.201009-1452OC
PMCID: PMC3136991  PMID: 21471104
airway remodeling; interleukin-13; transforming growth factor-β; matrix metalloproteinase
21.  INNATE IMMUNE ACTIVATION POTENTIATES ALLOIMMUNE LUNG DISEASE INDEPENDENT OF CXCR3 
Background
Pulmonary graft-versus-host disease (GVHD) after hematopoietic cell transplant (HCT) and allograft rejection after lung transplant are parallel immunologic processes that lead to significant morbidity and mortality. Our murine model of pulmonary GVHD after inhaled lipopolysaccharide (LPS) suggests that innate immune activation potentiates pulmonary transplant-related alloimmunity. We hypothesized that the CXCR3 receptor is necessary for development of LPS-induced pulmonary GVHD.
Methods
Recipient mice underwent allogeneic or syngeneic HCT followed by inhaled LPS. CXCR3 receptor inhibition was performed by using either CXCR3-knockout donors or systemic anti-CXCR3 antibody blockade. Pulmonary histopathology, cellular sub-populations, cytokine proteins and transcripts were analyzed.
Results
In comparison to lungs of LPS-unexposed and syngeneic controls, lungs of LPS-exposed allogeneic HCT mice demonstrated prominent lymphocytic perivascular and peribronchiolar infiltrates. This pathology was associated with increased CD4+ and CD8+ T cells as well as an increase in CXCR3 expression on T cells, a 2-fold upregulation of CXCR3 transcript and a 4-fold increase in its ligand CXCL10/IP10. CXCR3 inhibition using gene-knockout strategy or antibody blockade did not change the severity of pulmonary pathology (mean pathology score 6.5 for sufficient vs. 6.5 knockout, p=1.00; mean score 6.8 for antibody blockade vs. 7.4 control, p=0.46). CXCR3 inhibition did not prevent CD3 infiltration, nor prevent production of IL-12p40, nor significantly change other Th1, Th2, or Th17 cytokines in the lung.
Conclusions
In the setting of allogeneic HCT, innate immune activation by LPS potentiates pulmonary GVHD through CXCR3-independent mechanisms. Clinical strategies focused on inhibition of CXCR3 may prove insufficient to ameliorate transplant-related lung disease.
doi:10.1016/j.healun.2011.01.711
PMCID: PMC3091946  PMID: 21444213
Pulmonary graft-versus-host disease; Lung rejection; CXCR3; Lipopolysaccharide; Innate immunity
22.  Cell Plasticity in Lung Injury and Repair 
In April 2010, a NIH workshop was convened to discuss the current state of understanding of lung cell plasticity, including the responses of epithelial cells to injury, with the objectives of summarizing what is known, what the field needs to know, and how to get there. The proximal stimulus for this workshop is the body of recent evidence suggesting that plasticity is a prominent but incompletely characterized property of lung epithelial cells, and that a focus on understanding this aspect of epithelial cell biology in particular, may be an important window into disease pathobiology and pathogenesis. In addition to their many vital functions in maintaining tissue homeostasis, epithelial cells have emerged as both a central target of disease initiation and an active contributor to disease progression, making a workshop to investigate the role of cell plasticity in lung injury and repair timely. The workshop was organized around four major themes: lung epithelial cell plasticity, signaling control of plasticity, fibroblast plasticity and crosstalk, and translation to human disease. Although this breakdown was recognized to be somewhat artificial, it was felt that this approach would promote cross-fertilization among groups that ordinarily do not communicate and lend itself to the generation of new approaches. The summary reports of individual group discussions below are followed by consensus priorities and recommendations of the workshop participants.
doi:10.1513/pats.201012-067CB
PMCID: PMC3132783  PMID: 21653526
epithelial-mesenchymal transition (EMT); idiopathic pulmonary fibrosis; cell lineage
23.  The Pulmonary Complications of Bone Marrow Transplantation in Adults 
Western Journal of Medicine  1989;150(4):443-449.
These discussions are selected from the weekly staff conferences in the Department of Medicine, University of California, San Francisco. Taken from transcriptions, they are prepared by Homer A. Boushey, MD, Professor of Medicine, and John G. Fitz, MD, Assistant Professor of Medicine, under the direction of Lloyd H. Smith, Jr, MD, Professor of Medicine and Associate Dean in the School of Medicine. Requests for reprints should be sent to the Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA 94143.
PMCID: PMC1026580  PMID: 2660416
24.  Bayesian probit regression model for the diagnosis of pulmonary fibrosis: proof-of-principle 
BMC Medical Genomics  2011;4:70.
Background
The accurate diagnosis of idiopathic pulmonary fibrosis (IPF) is a major clinical challenge. We developed a model to diagnose IPF by applying Bayesian probit regression (BPR) modelling to gene expression profiles of whole lung tissue.
Methods
Whole lung tissue was obtained from patients with idiopathic pulmonary fibrosis (IPF) undergoing surgical lung biopsy or lung transplantation. Controls were obtained from normal organ donors. We performed cluster analyses to explore differences in our dataset. No significant difference was found between samples obtained from different lobes of the same patient. A significant difference was found between samples obtained at biopsy versus explant. Following preliminary analysis of the complete dataset, we selected three subsets for the development of diagnostic gene signatures: the first signature was developed from all IPF samples (as compared to controls); the second signature was developed from the subset of IPF samples obtained at biopsy; the third signature was developed from IPF explants. To assess the validity of each signature, we used an independent cohort of IPF and normal samples. Each signature was used to predict phenotype (IPF versus normal) in samples from the validation cohort. We compared the models' predictions to the true phenotype of each validation sample, and then calculated sensitivity, specificity and accuracy.
Results
Surprisingly, we found that all three signatures were reasonably valid predictors of diagnosis, with small differences in test sensitivity, specificity and overall accuracy.
Conclusions
This study represents the first use of BPR on whole lung tissue; previously, BPR was primarily used to develop predictive models for cancer. This also represents the first report of an independently validated IPF gene expression signature. In summary, BPR is a promising tool for the development of gene expression signatures from non-neoplastic lung tissue. In the future, BPR might be used to develop definitive diagnostic gene signatures for IPF, prognostic gene signatures for IPF or gene signatures for other non-neoplastic lung disorders such as bronchiolitis obliterans.
doi:10.1186/1755-8794-4-70
PMCID: PMC3199230  PMID: 21974901
25.  The Role of Surfactant Protein A in Bleomycin-induced Acute Lung Injury 
Rationale: Surfactant protein A (SP-A) is a collectin family member that has multiple immunomodulatory roles in lung host defense. SP-A levels are altered in the bronchoalveolar lavage (BAL) fluid and serum of patients with acute lung injury and acute respiratory distress syndrome, suggesting the importance of SP-A in the pathogenesis of acute lung injury.
Objectives: Investigate the role of SP-A in the murine model of noninfectious lung injury induced by bleomycin treatment.
Methods: Wild-type (WT) or SP-A deficient (SP-A−/−) mice were challenged with bleomycin, and various indices of lung injury were analyzed.
Measurements and Main Results: On challenge with bleomycin, SP-A−/− mice had a decreased survival rate as compared with WT mice. SP-A−/− mice had a higher degree of neutrophil-dominant cell recruitment and the expression of the inflammatory cytokines in BAL fluid than did WT mice. In addition, SP-A−/− mice had increased lung edema as assessed by the increased levels of intravenously injected Evans blue dye leaking into the lungs. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling and active caspase-3 staining suggested the increased apoptosis in the lung sections from SP-A−/− mice challenged with bleomycin. SP-A also specifically reduced bleomycin-induced apoptosis in mouse lung epithelial 12 cells in vitro. Moreover, intratracheal administration of exogenous SP-A rescued the phenotype of SP-A−/− mice in vivo.
Conclusions: These data suggest that SP-A plays important roles in modulating inflammation, apoptosis, and epithelial integrity in the lung in response to acute noninfectious challenges.
doi:10.1164/rccm.200907-1002OC
PMCID: PMC2894409  PMID: 20167853
collectin; noninfectious lung injury; apoptosis; surfactant replacement therapy

Results 1-25 (31)