PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Beryllium-Specific CD4+ T Cells in Blood as a Biomarker of Disease Progression 
Background
CD4+ T cells are responsible for the progressive lung damage seen in patients with chronic beryllium disease (CBD), a granulomatous lung disorder in which antigen-specific, Th1-type cytokine-secreting T cells have been characterized. Compared to beryllium (Be)-sensitized subjects, an increased number of Be-responsive T cells are present in the blood of CBD patients.
Objective
The aim of this study was to determine whether the number of Be-specific T cells in blood predicted the development of CBD in a cohort of Be-exposed subjects.
Methods
Using IFN-γ ELISPOT and proliferation-based assays, we determined the frequency and proliferative capacity of Be-responsive T cells in blood.
Results
Compared with the Be lymphocyte proliferation test which detected an abnormal Be-induced proliferative response in 11 of 260 (4.2%) workers from a Be-machining facility, IFN-γ ELISPOT detected a sensitization rate of 10% (χ2 = 55.7; P < 0.0001). A significant positive correlation was also noted between the number of Be-responsive CD4+ T cells in blood and lung of CBD patients. Importantly, the transition from Be sensitization to CBD was associated with an increased number of antigen-specific T cells in blood.
Conclusion
These findings have important implications for Be-induced disease and potentially other immune-mediated disorders, suggesting that the frequency of antigen-specific T cells in blood can serve as a noninvasive biomarker to predict disease development and severity of the Be-specific CD4+ T cell alveolitis.
Clinical implications
These findings suggest that the number of Be-responsive T cells in the circulation can serve as a biomarker of disease progression and as an estimate of the severity of Be-induced lung inflammation.
doi:10.1016/j.jaci.2011.08.022
PMCID: PMC3205205  PMID: 21943943
Human; Lung; CD4-Positive T-Lymphocytes; Beryllium; Cytokines; Granuloma; ELISPOT
2.  Risk of Chronic Beryllium Disease by HLA-DPB1 E69 Genotype and Beryllium Exposure in Nuclear Workers 
Rationale: Beryllium sensitization (BeS) and chronic beryllium disease (CBD) are determined by at least one genetic factor, a glutamic acid at position 69 (E69) of the HLA-DPB1 gene, and by exposure to beryllium. The relationship between exposure and the E69 genotype has not been well characterized.
Objectives: The study goal was to define the relationship between beryllium exposure and E69 for CBD and BeS.
Methods: Workers (n = 386) from a U.S. nuclear weapons facility were enrolled into a case–control study (70 BeS, 61 CBD, and 255 control subjects). HLA-DPB1 genotypes were determined by sequence-specific primer-polymerase chain reaction. Beryllium exposures were reconstructed on the basis of worker interviews and historical exposure measurements.
Measurements and Main Results: Any E69 carriage increased odds for CBD (odds ratio [OR], 7.61; 95% confidence interval [CI], 3.66–15.84) and each unit increase in lifetime weighted average exposure increased the odds for CBD (OR, 2.27; 95% CI, 1.26–4.09). Compared with E69-negative genotypes, a single E69-positive *02 allele increased the odds for BeS (OR, 12.01; 95% CI, 4.28–33.71) and CBD (OR, 3.46; 95% CI, 1.42–8.43). A single non-*02 E69 allele further increased the odds for BeS (OR, 29.54; 95% CI, 10.33–84.53) and CBD (OR, 11.97; 95% CI, 5.12–28.00) and two E69 allele copies conferred the highest odds for BeS (OR, 55.68; 95% CI, 14.80–209.40) and CBD (OR, 22.54; 95% CI, 7.00–72.62).
Conclusions: E69 and beryllium exposure both contribute to the odds of CBD. The increased odds for CBD and BeS due to E69 appear to be differentially distributed by genotype, with non-*02 E69 carriers and E69 homozygotes at higher odds than those with *02 genotypes.
doi:10.1164/rccm.201002-0254OC
PMCID: PMC3136994  PMID: 21471109
berylliosis; genetics; case–control studies; occupational exposure; HLA-DP antigens
3.  Beryllium Lymphocyte Proliferation Test Surveillance Identifies Clinically Significant Beryllium Disease 
Background
Workplace surveillance identifies chronic beryllium disease (CBD) but it remains unknown over what time frame mild CBD will progress to a more severe form.
Methods
We examined physiology and treatment in 229 beryllium sensitization (BeS) and 171 CBD surveillance-identified cases diagnosed from 1982 to 2002. Never smoking CBD cases (81) were compared to never smoking BeS patients (83) to assess disease progression. We compared CBD machinists to non-machinists to examine effects of exposure.
Results
At baseline, CBD and BeS cases did not differ significantly in exposure time or physiology. CBD patients were more likely to have machined beryllium. Of CBD cases, 19.3% went on to require oral immunosuppressive therapy. At 30 years from first exposure, measures of gas exchange were significantly worse and total lung capacity was lower for CBD subjects. Machinists had faster disease progression as measured by pulmonary function testing and gas exchange.
Conclusions
Medical surveillance for CBD identifies individuals at significant risk of disease progression and impairment with sufficient time since first exposure.
doi:10.1002/ajim.20736
PMCID: PMC3063521  PMID: 19681064
beryllium; chronic beryllium disease; medical surveillance

Results 1-3 (3)