PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (41)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Smoking duration, respiratory symptoms, and COPD in adults aged ≥45 years with a smoking history 
Background
The purpose of this study was to assess the relationship of smoking duration with respiratory symptoms and history of chronic obstructive pulmonary disease (COPD) in the South Carolina Behavioral Risk Factor Surveillance System survey in 2012.
Methods
Data from 4,135 adults aged ≥45 years with a smoking history were analyzed using multivariable logistic regression that accounted for sex, age, race/ethnicity, education, and current smoking status, as well as the complex sampling design.
Results
The distribution of smoking duration ranged from 19.2% (1–9 years) to 36.2% (≥30 years). Among 1,454 respondents who had smoked for ≥30 years, 58.3% were current smokers, 25.0% had frequent productive cough, 11.2% had frequent shortness of breath, 16.7% strongly agreed that shortness of breath affected physical activity, and 25.6% had been diagnosed with COPD. Prevalence of COPD and each respiratory symptom was lower among former smokers who quit ≥10 years earlier compared with current smokers. Smoking duration had a linear relationship with COPD (P<0.001) and all three respiratory symptoms (P<0.001) after adjusting for smoking status and other covariates. While COPD prevalence increased with prolonged smoking duration in both men and women, women had a higher age-adjusted prevalence of COPD in the 1–9 years, 20–29 years, and ≥30 years duration periods.
Conclusion
These state population data confirm that prolonged tobacco use is associated with respiratory symptoms and COPD after controlling for current smoking behavior.
doi:10.2147/COPD.S82259
PMCID: PMC4516194
tobacco use; chronic obstructive pulmonary disease; respiratory symptoms; population-based study
2.  Identification and Quantitation of Coding Variants and Isoforms of Pulmonary Surfactant Protein A 
Journal of Proteome Research  2014;13(8):3722-3732.
Pulmonary surfactant protein A (SP-A), a heterooligomer of SP-A1 and SP-A2, is an important regulator of innate immunity of the lung. Nonsynonymous single nucleotide variants of SP-A have been linked to respiratory diseases, but the expressed repertoire of SP-A protein in human airway has not been investigated. Here, we used parallel trypsin and Glu-C digestion, followed by LC–MS/MS, to obtain sequence coverage of common SP-A variants and isoform-determining peptides. We further developed a SDS-PAGE-based, multiple reaction monitoring (GeLC-MRM) assay for enrichment and targeted quantitation of total SP-A, the SP-A2 isoform, and the Gln223 and Lys223 variants of SP-A, from as little as one milliliter of bronchoalveolar lavage fluid. This assay identified individuals with the three genotypes at the 223 position of SP-A2: homozygous major (Gln223/Gln223), homozygous minor (Lys223/Lys223), or heterozygous (Gln223/Lys223). More generally, our studies demonstrate the challenges inherent in distinguishing highly homologous, copurifying protein isoforms by MS and show the applicability of MRM mass spectrometry for identification and quantitation of nonsynonymous single nucleotide variants and other proteoforms in airway lining fluid.
doi:10.1021/pr500307f
PMCID: PMC4123939  PMID: 25025725
allelic variant; targeted proteomics; surfactant-associated protein; rs1965708; ionKey
3.  Asthma Phenotypes and Interleukin-13 — Moving Closer to Personalized Medicine 
The New England journal of medicine  2011;365(12):1141-1144.
doi:10.1056/NEJMe1108666
PMCID: PMC4390041  PMID: 21879891
4.  Asthma and the host-microbe interaction 
doi:10.1016/j.jaci.2013.03.004
PMCID: PMC4390049  PMID: 23622122
5.  Pharmacotherapy of severe asthma 
Current opinion in pharmacology  2010;10(3):266-271.
Severe asthma is a complex and heterogeneous phenotype where management can be challenging. While many patients with severe asthma respond to high-dose inhaled corticosteroids in combination with a long-acting β-agonist, there remains a significant subset of patients that require oral corticosteroids to control symptoms. Alternative therapies are needed to help reduce the need for continuous oral corticosteroids; however, there are currently very few effective options. Several new alternatives to oral corticosteroids have been evaluated in severe asthma as add-on to conventional therapy. These include macrolide antibiotics, omalizumab, tumor necrosis factor-α inhibitors, cytokine receptor antagonists, and bronchial thermoplasty. The challenge with these entities is determining the appropriate phenotype of severe asthma where effectiveness is demonstrated, given the significant heterogeneity of the disease. Therefore, there is a crucial need to better understand the mechanisms and pathophysiology of severe asthma so more effective immunomodulators and biologic therapies can emerge.
doi:10.1016/j.coph.2010.04.010
PMCID: PMC4390052  PMID: 20462794
6.  Asthma Outcomes: Pulmonary Physiology 
Background
Outcomes of pulmonary physiology have a central place in asthma clinical research.
Objective
At the request of National Institutes of Health (NIH) institutes and other federal agencies, an expert group was convened to provide recommendations on the use of pulmonary function measures as asthma outcomes that should be assessed in a standardized fashion in future asthma clinical trials and studies to allow for cross-study comparisons.
Methods
Our subcommittee conducted a comprehensive search of PubMed to identify studies that focused on the validation of various airway response tests used in asthma clinical research. The subcommittee classified the instruments as core (to be required in future studies), supplemental (to be used according to study aims and in a standardized fashion), or emerging (requiring validation and standardization). This work was discussed at an NIH-organized workshop in March 2010 and finalized in September 2011.
Results
A list of pulmonary physiology outcomes that applies to both adults and children older than 6 years was created. These outcomes were then categorized into core, supplemental, and emerging. Spirometric outcomes (forced expiratory volume in 1 second [FEV1], forced vital capacity [FVC], and FEV1/FVC) are proposed as core outcomes for study population characterization, for observational studies, and for prospective clinical trials. Bronchodilator reversibility and pre- and post-bronchodilator FEV1 also are core outcomes for study population characterization and observational studies.
Conclusions
The subcommittee considers pulmonary physiology outcomes of central importance in asthma and proposes spirometric outcomes as core outcomes for all future NIH-initiated asthma clinical research.
doi:10.1016/j.jaci.2011.12.986
PMCID: PMC4263032  PMID: 22386510
Spirometry; airway responsiveness; peak expiratory flow monitoring; lung volumes; gas exchange
7.  Bronchial Thermoplasty – Long Term Safety and Effectiveness in Severe Persistent Asthma 
Background
Bronchial thermoplasty (BT) has previously been shown to improve asthma control out to 2 years in patients with severe persistent asthma.
Objective
To assess effectiveness and safety of BT in asthma patients 5 years post therapy.
Methods
BT-treated subjects from the Asthma Intervention Research 2 (AIR2) Trial (ClinicalTrials.gov NCT01350414) were evaluated annually for 5 years to assess long-term safety of BT and durability of treatment effect. Outcomes assessed post-BT included severe exacerbations, adverse events, healthcare utilization, spirometry data, and high resolution computed tomography (HRCT) scans.
Results
162/190 BT-treated subjects (85.3%) from the AIR2 Trial completed 5 years of follow-up. The proportion of subjects experiencing severe exacerbations and Emergency Room visits, and the rates of events in each of years 1 to 5 remained low and were less than those observed in the 12 months prior to BT treatment (average 5 year reduction in proportions: 44% for exacerbations and 78% for ER visits). Respiratory adverse events and respiratory-related hospitalizations remained unchanged in Years 2 through 5 as compared to the first year after BT. Pre-BD FEV1 values remained stable between years 1 and 5 after BT, despite a 17% reduction in average daily inhaled corticosteroid dose. HRCT scans from baseline to 5 years after BT showed no structural abnormalities that could be attributed to BT.
Conclusions
These data demonstrate the 5-year durability of the benefits of BT with regard to both asthma control (based on maintained reduction in severe exacerbations and ER visits for respiratory symptoms) and safety. BT has become an important addition to our treatment armamentarium and should be considered for patients with severe persistent asthma who remain symptomatic despite taking ICS (inhaled corticosteroids) and LABA (long-acting-β2-agonists).
doi:10.1016/j.jaci.2013.08.009
PMCID: PMC4114404  PMID: 23998657
Bronchial thermoplasty; asthma; Bronchoscopic procedure; Alair System; asthma exacerbation
10.  Guidelines for the Diagnosis and Management of Food Allergy in the United States 
Food allergy is an important public health problem that affects children and adults and may be increasing in prevalence. Despite the risk of severe allergic reactions and even death, there is no current treatment for food allergy: the disease can only be managed by allergen avoidance or treatment of symptoms. The diagnosis and management of food allergy also may vary from one clinical practice setting to another. Finally, because patients frequently confuse nonallergic food reactions, such as food intolerance, with food allergies, there is an unfounded belief among the public that food allergy prevalence is higher than it truly is. In response to these concerns, the National Institute of Allergy and Infectious Diseases, working with 34 professional organizations, federal agencies, and patient advocacy groups, led the development of clinical guidelines for the diagnosis and management of food allergy. These Guidelines are intended for use by a wide variety of health care professionals, including family practice physicians, clinical specialists, and nurse practitioners. The Guidelines include a consensus definition for food allergy, discuss comorbid conditions often associated with food allergy, and focus on both IgE-mediated and non-IgE-mediated reactions to food. Topics addressed include the epidemiology, natural history, diagnosis, and management of food allergy, as well as the management of severe symptoms and anaphylaxis. These Guidelines provide 43 concise clinical recommendations and additional guidance on points of current controversy in patient management. They also identify gaps in the current scientific knowledge to be addressed through future research.
doi:10.1016/j.jaci.2010.10.007
PMCID: PMC4241964  PMID: 21134576
food; allergy; anaphylaxis; diagnosis; disease management; guidelines
11.  Effect of Vitamin D3 on Asthma Treatment Failures in Adults With Symptomatic Asthma and Lower Vitamin D Levels 
JAMA  2014;311(20):2083-2091.
IMPORTANCE
In asthma and other diseases, vitamin D insufficiency is associated with adverse outcomes. It is not known if supplementing inhaled corticosteroids with oral vitamin D3 improves outcomes in patients with asthma and vitamin D insufficiency.
OBJECTIVE
To evaluate if vitamin D supplementation would improve the clinical efficacy of inhaled corticosteroids in patients with symptomatic asthma and lower vitamin D levels.
DESIGN, SETTING, AND PARTICIPANTS
The VIDA (Vitamin D Add-on Therapy Enhances Corticosteroid Responsiveness in Asthma) randomized, double-blind, parallel, placebo-controlled trial studying adult patients with symptomatic asthma and a serum 25-hydroxyvitamin D level of less than 30 ng/mL was conducted across 9 academic US medical centers in the National Heart, Lung, and Blood Institute’s AsthmaNet network, with enrollment starting in April 2011 and follow-up complete by January 2014. After a run-in period that included treatment with an inhaled corticosteroid, 408 patients were randomized.
INTERVENTIONS
Oral vitamin D3 (100 000 IU once, then 4000 IU/d for 28 weeks; n = 201) or placebo (n = 207) was added to inhaled ciclesonide (320 µg/d). If asthma control was achieved after 12 weeks, ciclesonide was tapered to 160 µg/d for 8 weeks, then to 80 µg/d for 8 weeks if asthma control was maintained.
MAIN OUTCOMES AND MEASURES
The primary outcome was time to first asthma treatment failure (a composite outcome of decline in lung function and increases in use of β-agonists, systemic corticosteroids, and health care).
RESULTS
Treatment with vitamin D3 did not alter the rate of first treatment failure during 28 weeks (28%[95% CI, 21%-34%] with vitamin D3 vs 29% [95% CI, 23%–35%] with placebo; adjusted hazard ratio, 0.9 [95% CI, 0.6–1.3]). Of 14 prespecified secondary outcomes, 9 were analyzed, including asthma exacerbation; of those 9, the only statistically significant outcome was a small difference in the overall dose of ciclesonide required to maintain asthma control (111.3 µg/d [95% CI, 102.2–120.4 µg/d] in the vitamin D3 group vs 126.2 µg/d [95% CI, 117.2–135.3 µg/d] in the placebo group; difference of 14.9 µg/d [95% CI, 2.1–27.7 µg/d]).
CONCLUSIONS AND RELEVANCE
Vitamin D3 did not reduce the rate of first treatment failure or exacerbation in adults with persistent asthma and vitamin D insufficiency. These findings do not support a strategy of therapeutic vitamin D3 supplementation in patients with symptomatic asthma.
TRIAL REGISTRATION
clinicaltrials.gov Identifier: NCT01248065
doi:10.1001/jama.2014.5052
PMCID: PMC4217655  PMID: 24838406
12.  Predictors of Response to Tiotropium Versus Salmeterol in Adults with Asthma1 
The Journal of allergy and clinical immunology  2013;132(5):10.1016/j.jaci.2013.08.003.
Background
Tiotropium has activity as an asthma controller. However, predictors of a positive response to tiotropium have not been described.
Objective
To describe individual and differential response of patients with asthma to salmeterol and tiotropium, when added to an ICS, as well as predictors of a positive clinical response.
Methods
Data from the double-blind, three-way crossover NHLBI Asthma Clinical Research Network’s TALC trial (ClinicalTrials.gov number, NCT00565266) were analyzed for individual and differential treatment responses to salmeterol and tiotropium, and predictors of a positive response to the endpoints FEV1, morning peak expiratory flow (AM PEF), and asthma control days (ACDs).
Results
While approximately equal numbers of patients showed a differential response to salmeterol and tiotropium in terms of AM PEF (90 and 78, respectively), and ACDs (49 and 53, respectively), more showed a differential response to tiotropium for FEV1 (104) than salmeterol (62). An acute response to a short-acting bronchodilator, especially albuterol, predicted a positive clinical response to tiotropium for FEV1 (OR 4.08 [CI 2.00–8.31], P < 0.001) and AM PEF (OR 2.12 [CI 1.12–4.01], P = 0.021), as did a decreased FEV1/FVC ratio (FEV1 response increased 0.39% of baseline for every 1% decrease in the FEV1/FVC ratio). Higher cholinergic tone was also a predictor, while ethnicity, gender, atopy, IgE Level, sputum eosinophils, FENO, asthma duration, and BMI were not.
Conclusion
While these results need confirmation, predictors of a positive clinical response to tiotropium include a positive response to albuterol and airway obstruction, factors which could help identify appropriate patients for this therapy.
doi:10.1016/j.jaci.2013.08.003
PMCID: PMC3826080  PMID: 24084072
asthma; tiotropium; salmeterol; responder analysis; predictor of response
13.  Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease 
NMR in biomedicine  2012;26(4):424-435.
In this study, hyperpolarized (HP) 129Xe MR ventilation and 1H anatomical images were obtained from 3 subject groups: young healthy volunteers (HV), subjects with chronic obstructive pulmonary disease (COPD), and age-matched control subjects (AMC). Ventilation images were quantified by 2 methods: an expert reader-based ventilation defect score percentage (VDS%) and a semi-automatic segmentation-based ventilation defect percentage (VDP). Reader-based values were assigned by two experienced radiologists and resolved by consensus. In the semi-automatic analysis, 1H anatomical images and 129Xe ventilation images were both segmented following registration, to obtain the thoracic cavity volume (TCV) and ventilated volume (VV), respectively, which were then expressed as a ratio to obtain the VDP. Ventilation images were also characterized by generating signal intensity histograms from voxels within the TCV, and heterogeneity was analyzed using the coefficient of variation (CV). The reader-based VDS% correlated strongly with the semi-automatically generated VDP (r = 0.97, p < 0.0001), and with CV (r = 0.82, p < 0.0001). Both 129Xe ventilation defect scoring metrics readily separated the 3 groups from one another and correlated significantly with FEV1 (VDS%: r = -0.78, p = 0.0002; VDP: r = -0.79, p = 0.0003; CV: r = -0.66, p = 0.0059) and other pulmonary function tests. In the healthy subject groups (HV and AMC), the prevalence of ventilation defects also increased with age (VDS%: r = 0.61, p = 0.0002; VDP: r = 0.63, p = 0.0002). Moreover, ventilation histograms and their associated CVs distinguished between COPD subjects with similar ventilation defect scores but visibly different ventilation patterns.
doi:10.1002/nbm.2880
PMCID: PMC3624045  PMID: 23065808
hyperpolarized; 129Xe; Xe-129; magnetic resonance imaging; ventilation; defect; segmentation; COPD; coefficient of variation; VDP; VDS; VDV; FEV1
14.  SHP-1 As a Critical Regulator of Mycoplasma pneumoniae-Induced Inflammation in Human Asthmatic Airway Epithelial Cells 
Journal of immunology (Baltimore, Md. : 1950)  2012;188(7):10.4049/jimmunol.1100573.
Asthma is a chronic inflammatory disease in which airway epithelial cells are the first line of defense against exposure of the airway to infectious agents. Src homology protein (SHP)-1, a protein tyrosine phosphatase, is a negative regulator of signaling pathways that are critical to the development of asthma and host defense. We hypothesize that SHP-1 function is defective in asthma, contributing to the increased inflammatory response induced by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. M. pneumoniae significantly activated SHP-1 in airway epithelial cells collected from nonasthmatic subjects by bronchoscopy with airway brushing but not in cells from asthmatic subjects. In asthmatic airway epithelial cells, M. pneumoniae induced significant PI3K/Akt phosphorylation, NF-κB activation, and IL-8 production compared with nonasthmatic cells, which were reversed by SHP-1 overexpression. Conversely, SHP-1 knockdown significantly increased IL-8 production and PI3K/Akt and NF-κB activation in the setting of M. pneumoniae infection in nonasthmatic cells, but it did not exacerbate these three parameters already activated in asthmatic cells. Thus, SHP-1 plays a critical role in abrogating M. pneumoniae-induced IL-8 production in non-asthmatic airway epithelial cells through inhibition of PI3K/Akt and NF-κB activity, but it is defective in asthma, resulting in an enhanced inflammatory response to infection.
doi:10.4049/jimmunol.1100573
PMCID: PMC3880785  PMID: 22371396
15.  P2X7-Regulated Protection from Exacerbations and Loss of Control Is Independent of Asthma Maintenance Therapy 
Rationale: The function of the P2X7 nucleotide receptor protects against exacerbation in people with mild-intermittent asthma during viral illnesses, but the impact of disease severity and maintenance therapy has not been studied.
Objectives: To evaluate the association between P2X7, asthma exacerbations, and incomplete symptom control in a more diverse population.
Methods: A matched P2RX7 genetic case-control was performed with samples from Asthma Clinical Research Network trial participants enrolled before July 2006, and P2X7 pore activity was determined in whole blood samples as an ancillary study to two trials completed subsequently.
Measurements and Main Results: A total of 187 exacerbations were studied in 742 subjects, and the change in asthma symptom burden was studied in an additional 110 subjects during a trial of inhaled corticosteroids (ICS) dose optimization. African American carriers of the minor G allele of the rs2230911 loss-of-function single nucleotide polymorphism were more likely to have a history of prednisone use in the previous 12 months, with adjustment for ICS and long-acting β2-agonists use (odds ratio, 2.7; 95% confidence interval, 1.2–6.2; P = 0.018). Despite medium-dose ICS, attenuated pore function predicted earlier exacerbations in incompletely controlled patients with moderate asthma (hazard ratio, 3.2; confidence interval, 1.1–9.3; P = 0.033). After establishing control with low-dose ICS in patients with mild asthma, those with attenuated pore function had more asthma symptoms, rescue albuterol use, and FEV1 reversal (P < 0.001, 0.03, and 0.03, respectively) during the ICS adjustment phase.
Conclusions: P2X7 pore function protects against exacerbations of asthma and loss of control, independent of baseline severity and the maintenance therapy.
doi:10.1164/rccm.201204-0750OC
PMCID: PMC3570642  PMID: 23144325
asthma; P2X7; exacerbation; Asthma Clinical Research Network; corticosteroids
16.  Obesity, metabolic dysregulation and oxidative stress in asthma☆ 
Biochimica et biophysica acta  2011;1810(11):1120-1126.
Background
Epidemiological data demonstrate an increased risk of developing incident asthma with increasing adiposity. While the vast majority of studies support the interaction between obesity and asthma, the causality is unclear.
Scope of review
This article will review the current literature supporting the presence of an obese asthma phenotype and the possible mechanisms mediating the effects of obesity on asthma.
Major conclusions
Obesity is associated with poor asthma control, altered responsiveness to medications and increased morbidity. Obesity is characterized by systemic inflammation that may result in increased airway inflammation. However, this assertion is not supported by current studies that demonstrate a lack of significant airway inflammation in obese asthmatics. In spite this observation one must consider limitations of these studies including the fact that most subjects were treated with inhaled corticosteroids that would likely alter inflammation in the lung. Thus, it remains unclear if obesity is associated with alterations in inflammation in the airways of subjects with asthma.
Hormones such as leptin and adiponectin are affected by obesity and may play a role in mediating innate immune responses and allergic responses, respectively. The role of oxidative stress remains controversial and the current evidence suggests that while oxidative stress is important in asthma, it does not fully explain the characteristics associated with this unique phenotype.
General significance
Obesity related asthma is associated with increased morbidity and differential response to asthma therapies. Understanding the mechanisms mediating this phenotype would have significant implications for millions of people suffering with asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.
doi:10.1016/j.bbagen.2011.09.004
PMCID: PMC3786599  PMID: 21944975
Asthma; Obesity; Metabolic syndrome; Oxidative stress; Leptin; Inflammation
17.  Comparison of Physician-, Biomarker-, and Symptom-Based Strategies for Adjustment of Inhaled Corticosteroid Therapy in Adults With Asthma 
Context
No consensus exists for adjusting inhaled corticosteroid therapy in patients with asthma. Approaches include adjustment at outpatient visits guided by physician assessment of asthma control (symptoms, rescue therapy, pulmonary function), based on exhaled nitric oxide, or on a day-to-day basis guided by symptoms.
Objective
To determine if adjustment of inhaled corticosteroid therapy based on exhaled nitric oxide or day-to-day symptoms is superior to guideline-informed, physician assessment–based adjustment in preventing treatment failure in adults with mild to moderate asthma.
Design, Setting, and Participants
A randomized, parallel, 3-group, placebo-controlled, multiply-blinded trial of 342 adults with mild to moderate asthma controlled by low-dose inhaled corticosteroid therapy (n=114 assigned to physician assessment–based adjustment [101 completed], n=115 to biomarker-based [exhaled nitric oxide] adjustment [92 completed], and n=113 to symptom-based adjustment [97 completed]), the Best Adjustment Strategy for Asthma in the Long Term (BASALT) trial was conducted by the Asthma Clinical Research Network at 10 academic medical centers in the United States for 9 months between June 2007 and July 2010.
Interventions
For physician assessment–based adjustment and biomarker-based (exhaled nitric oxide) adjustment, the dose of inhaled corticosteroids was adjusted every 6 weeks; for symptom-based adjustment, inhaled corticosteroids were taken with each albuterol rescue use.
Main Outcome Measure
The primary outcome was time to treatment failure.
Results
There were no significant differences in time to treatment failure. The 9-month Kaplan-Meier failure rates were 22% (97.5% CI, 14%-33%; 24 events) for physician assessment–based adjustment, 20% (97.5% CI, 13%-30%; 21 events) for biomarker-based adjustment, and 15% (97.5% CI, 9%-25%; 16 events) for symptom-based adjustment. The hazard ratio for physician assessment–based adjustment vs biomarker-based adjustment was 1.2 (97.5% CI, 0.6-2.3). The hazard ratio for physician assessment–based adjustment vs symptom-based adjustment was 1.6 (97.5% CI, 0.8-3.3).
Conclusion
Among adults with mild to moderate persistent asthma controlled with low-dose inhaled corticosteroid therapy, the use of either biomarker-based or symptom-based adjustment of inhaled corticosteroids was not superior to physician assessment–based adjustment of inhaled corticosteroids in time to treatment failure.
Trial Registration
clinicaltrials.gov Identifier: NCT00495157
doi:10.1001/2012.jama.10893
PMCID: PMC3697088  PMID: 22968888
18.  Alveolar Macrophages from Overweight/Obese Subjects with Asthma Demonstrate a Proinflammatory Phenotype 
Rationale: Obesity is associated with increased prevalence and severity of asthma. Adipose tissue macrophages can contribute to the systemic proinflammatory state associated with obesity. However, it remains unknown whether alveolar macrophages have a unique phenotype in overweight/obese patients with asthma.
Objectives: We hypothesized that leptin levels would be increased in the bronchoalveolar lavage fluid from overweight/obese subjects and, furthermore, that leptin would alter the response of alveolar macrophages to bacterial LPS.
Methods: Forty-two subjects with asthma and 46 healthy control subjects underwent research bronchoscopy. Bronchoalveolar lavage fluid from 66 was analyzed for the level of cellular inflammation, cytokines, and soluble leptin. Cultured primary macrophages from 22 subjects were exposed to LPS, leptin, or leptin plus LPS. Cytokines were measured in the supernatants.
Measurements and Main Results: Leptin levels were increased in overweight/obese subjects, regardless of asthma status (P = 0.013), but were significantly higher in overweight/obese subjects with asthma. Observed levels of tumor necrosis factor-α were highest in overweight/obese subjects with asthma. Ex vivo studies of primary alveolar macrophages indicated that the response to LPS was most robust in alveolar macrophages from overweight/obese subjects with asthma and that preexposure to high-dose leptin enhanced the proinflammatory response. Leptin alone was sufficient to induce production of proinflammatory cytokines from macrophages derived from overweight/obese subjects with asthma.
Conclusions: Ex vivo studies indicate that alveolar macrophages derived from overweight/obese subjects with asthma are uniquely sensitive to leptin. This macrophage phenotype, in the context of higher levels of soluble leptin, may contribute to the pathogenesis of airway disease associated with obesity.
doi:10.1164/rccm.201109-1671OC
PMCID: PMC3443798  PMID: 22773729
tumor necrosis factor-α; leptin; innate immunity; lipopolysaccharide; environmental lung disease
19.  Mast cell TNF receptors regulate responses to Mycoplasma pneumoniae in surfactant protein A (SP-A)−/− mice 
Background
Mycoplasma pneumoniae (Mp) frequently colonizes the airways of patients with chronic asthma and likely contributes to asthma exacerbations. We previously reported that mice lacking surfactant protein A (SP-A) have increased airway hyperresponsiveness (AHR) during M pneumoniae infection versus wild-type mice mediated by TNF-α. Mast cells (MCs) have been implicated in AHR in asthma models and produce and respond to TNF-α.
Objective
Determine the contribution of MC/TNF interactions to AHR in airways lacking functional SP-A during Mp infection. Methods: Bronchoalveolar lavage fluid was collected from healthy and asthmatic subjects to examine TNF-α levels and M pneumoniae positivity. To determine how SP-A interactions with MCs regulate airway homeostasis, we generated mice lacking both SP-A and MCs (SP-A−/−KitW-sh/W-sh) and infected them with M pneumoniae.
Results
Our findings indicate that high TNF-α levels correlate with M pneumoniae positivity in human asthmatic patients and that human SP-A inhibits M pneumoniae–stimulated transcription and release of TNF-α by MCs, implicating a protective role for SP-A. MC numbers increase in M pneumoniae–infected lungs, and airway reactivity is dramatically attenuated when MCs are absent. Using SP-A−/−KitW-sh/W-sh mice engrafted with TNF-α−/− or TNF receptor (TNF-R)−/− MCs, we found that TNF-α activation of MCs through the TNF-R, but not MC-derived TNF-α, leads to augmented AHR during M pneumoniae infection when SP-A is absent. Additionally, M pneumoniae– infected SP-A−/−KitW-sh/W-sh mice engrafted with TNF-α−/− or TNF-R−/− MCs have decreased mucus production compared with that seen in mice engrafted with wild-type MCs, whereas burden was unaffected.
Conclusion
Our data highlight a previously unappreciated but vital role for MCs as secondary responders to TNF-α during the host response to pathogen infection.
doi:10.1016/j.jaci.2012.03.002
PMCID: PMC3578696  PMID: 22502799
Mast cells; TNF; Mycoplasma species; airway hyperres-ponsiveness; mucus
20.  SP-A Preserves Airway Homeostasis During Mycoplasma pneumoniae Infection in Mice 
The lung is constantly challenged during normal breathing by a myriad of environmental irritants and infectious insults. Pulmonary host defense mechanisms maintain homeostasis between inhibition/clearance of pathogens and regulation of inflammatory responses that could injure the airway epithelium. One component of this defense mechanism, surfactant protein-A (SP-A), exerts multifunctional roles in mediating host responses to inflammatory and infectious agents. SP-A has a bacteriostatic effect on Mycoplasma pneumoniae (Mp), which occurs by binding surface disaturated phosphatidylglycerols. SP-A can also bind the Mp membrane protein, MPN372. In this study we investigated the role of SP-A during acute phase pulmonary infection with Mp using mice deficient in SP-A. Biologic responses, inflammation and cellular infiltration, were much greater in Mp infected SP-A−/− mice than wild type mice. Likewise, physiologic responses (airway hyperresponsiveness and lung compliance) to Mp infection were more severely affected in SP-A−/− mice. Both Mp-induced biologic and physiologic changes were attenuated by pharmacologic inhibition of TNF-α. Our findings demonstrate that SP-A is vital to preserving lung homeostasis and host defense to this clinically relevant strain of Mp by curtailing inflammatory cell recruitment and limiting an overzealous TNF-α response.
doi:10.4049/jimmunol.0900452
PMCID: PMC3656438  PMID: 19494306
lung; inflammation; bacterial
21.  The TLR5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens 
Nature medicine  2012;18(11):1705-1710.
Allergic asthma is a complex disease characterized by eosinophilic pulmonary inflammation, mucus production and reversible airway obstruction1. Exposure to indoor allergens is a clear risk factor for asthma, but this disease is also associated with high household levels of total and Gram-negative bacteria2. The ability of bacterial products to act as adjuvants3 suggests they might promote asthma by priming allergic sensitization to inhaled allergens. In support of this idea, house dust extracts (HDEs) can activate antigen presenting dendritic cells (DC) in vitro and promote allergic sensitization to inhaled innocuous proteinsin vivo4. It is unknown which microbial products provide most of the adjuvant activity in HDEs. A screen of microbial products for their adjuvant activity in the airway revealed that the bacterial protein, flagellin (FLA) stimulated strong allergic responses to an innocuous inhaled protein. Moreover, toll-like receptor (TLR)5, the mammalian receptor for FLA5,6, was required for priming strong allergic responses to natural indoor allergens present in HDEs. In addition, the incidence of human asthma was associated with high serum levels of FLA-specific antibodies. Together, these findings suggest that household FLA promotes the development of allergic asthma by TLR5-dependent priming of allergic responses to indoor allergens.
doi:10.1038/nm.2920
PMCID: PMC3493750  PMID: 23064463
22.  Chronic treatment in vivo with β-adrenoceptor agonists induces dysfunction of airway β2-adrenoceptors and exacerbates lung inflammation in mice 
British Journal of Pharmacology  2012;165(7):2365-2377.
BACKGROUND AND PURPOSE
Inhalation of a β-adrenoceptor agonist (β-agonist) is first-line asthma therapy, used for both prophylaxis against, and acute relief of, bronchoconstriction. However, repeated clinical use of β-agonists leads to impaired bronchoprotection and, in some cases, adverse patient outcomes. Mechanisms underlying this β2-adrenoceptor dysfunction are not well understood, due largely to the lack of a comprehensive animal model and the uncertainty as to whether or not bronchorelaxation in mice is mediated by β2-adrenoceptors. Thus, we aimed to develop a mouse model that demonstrated functional β-agonist-induced β2-adrenoceptor desensitization in the context of allergic inflammatory airway disease.
EXPERIMENTAL APPROACH
We combined chronic allergen exposure with repeated β-agonist inhalation in allergen-treated BALB/C mice and examined the contribution of β2-adrenoceptors to albuterol-induced bronchoprotection using FVB/NJ mice with genetic deletion of β2-adrenoceptors (KO). Associated inflammatory changes – cytokines (ELISA), cells in bronchoalevolar lavage and airway remodelling (histology) and β2-adrenoceptor density (radioligand binding) – were also measured.
KEY RESULTS
β2-Adrenoceptors mediated albuterol-induced bronchoprotection in mice. Chronic treatment with albuterol induced loss of bronchoprotection, associated with exacerbation of the inflammatory components of the asthma phenotype.
CONCLUSIONS AND IMPLICATIONS
This animal model reproduced salient features of human asthma and linked loss of bronchoprotection with airway pathobiology. Accordingly, the model offers an advanced tool for understanding the mechanisms of the effects of chronic β- agonist treatment on β-adrenoceptor function in asthma. Such information may guide the clinical use of β-agonists and provide insight into development of novel β-adrenoceptor ligands for the treatment of asthma.
doi:10.1111/j.1476-5381.2011.01725.x
PMCID: PMC3413869  PMID: 22013997
β-adrenoceptor; β-agonist; receptor desensitization; airway remodelling; airway inflammation; asthma; loss of bronchoprotection; mouse
23.  Assessment of murine lung mechanics outcome measures: alignment with those made in asthmatics 
Although asthma is characterized as an inflammatory disease, recent reports highlight the importance of pulmonary physiology outcome measures to the clinical assessment of asthma control and risk of asthma exacerbation. Murine models of allergic inflammatory airway disease have been widely used to gain mechanistic insight into the pathogenesis of asthma; however, several aspects of murine models could benefit from improvement. This review focuses on aligning lung mechanics measures made in mice with those made in humans, with an eye toward improving the translational utility of these measures. A brief description of techniques available to measure murine lung mechanics is provided along with a methodological consideration of their utilization. How murine lung mechanics outcome measures relate to pulmonary physiology measures conducted in humans is discussed and we recommend that, like human studies, outcome measures be standardized for murine models of asthma.
doi:10.3389/fphys.2012.00491
PMCID: PMC3569663  PMID: 23408785
airway hyperresponsiveness; murine; asthma; lung mechanics; translational research
24.  The Role of Hyaluronan and Hyaluronan Binding Proteins in Human Asthma 
Background
The characteristics of human asthma are chronic inflammation and airway remodeling. Hyaluronan (HA), a major extracellular matrix component, accumulates during inflammatory lung diseases including asthma. Hyaluronan fragments stimulate macrophages to produce inflammatory cytokines. We hypothesized that HA and its receptors would play a role in human asthma.
Objective
To investigate the role of HA and HA binding proteins in human asthma.
Methods
Twenty-one subjects with asthma and 25 normal control subjects underwent bronchoscopy with endobronchial biopsy and bronchoalveolar lavage (BAL). Fibroblasts were cultured, HA and HA synthase expression was determined at baseline and after exposure to several mediators relevant to asthma pathobiology. The expression of HA binding proteins, CD44, TLR2 and TLR4 on BAL macrophages was determined by flow cytometry. IL-8 production by macrophages in response to HA fragment stimulation was compared.
Results
Airway fibroblasts from asthma patients produced significantly increased concentrations of lower molecular weight HA compared to those of normal fibroblasts. Hyaluronan synthase 2 mRNA was markedly increased in asthmatic fibroblasts. Asthmatic macrophages showed a decrease in cell surface CD44 expression and an increase in TLR2 and TLR4 expression. Macrophages from asthmatic subjects showed an increase in responsiveness to low molecular weight HA stimulation, as demonstrated by increased IL-8 production.
Conclusions
HA homeostasis is deranged in asthma with increased production by fibroblasts and decreased CD44 expression on alveolar macrophages. Upregulation of TLR2 and TLR4 on macrophages with increased sensitivity to HA fragments suggests a novel pro-inflammatory mechanism by which persistence of HA fragments could contribute to chronic inflammation and airway remodeling in asthma.
doi:10.1016/j.jaci.2011.04.006
PMCID: PMC3149736  PMID: 21570715
Asthma; Hyaluronan; Cytokines; Fibroblasts; Macrophages
25.  Airway Fibroblasts in Asthma Manifest an Invasive Phenotype 
Rationale: Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMPs). IL-13 is a key TH2 cytokine that directs many features of airway remodeling through TGF-β1 and MMPs.
Objectives: We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-β1 and MMPs in asthma compared with normal controls.
Methods: Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV1: 90 ± 3.6% pred) and 17 normal control subjects (FEV1: 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-β1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels.
Measurements and Main Results: IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-β1 and MMPs blocked IL-13–induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects.
Conclusions: IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-β1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13–directed airway remodeling in asthma.
doi:10.1164/rccm.201009-1452OC
PMCID: PMC3136991  PMID: 21471104
airway remodeling; interleukin-13; transforming growth factor-β; matrix metalloproteinase

Results 1-25 (41)