Search tips
Search criteria

Results 1-25 (30)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Utilization of Mechanical Ventilation for Asthma Exacerbations: Analysis of a National Database 
Respiratory care  2013;59(5):644-653.
The current frequency of noninvasive (NIV) and invasive mechanical ventilation use in asthma exacerbations (AEs) and the relationship to outcomes are unknown.
We used the Healthcare Cost and Utilization Project Nationwide Inpatient Sample to identify patients discharged with a principal diagnosis of AE. For each discharge, we determined whether NIV or invasive mechanical ventilation was initiated during the first 2 hospital days. Using multivariate logistic regression to adjust for potential confounders, we determined whether use of mechanical ventilation and in-hospital mortality changed between 2000 and 2008.
The number of AEs increased by 15.8% from 2000 to 2008. The proportion of admissions for which invasive mechanical ventilation was used during the first 2 days decreased from 1.4% in 2000 to 0.73% in 2008, whereas NIV use increased from 0.34% to 1.9%. The adjusted mortality from AEs requiring NIV or invasive mechanical ventilation was unchanged from 2000 to 2008. The hospital stay was also unchanged.
There was a substantial increase in the use of mechanical ventilation, accompanied by a shift from invasive mechanical ventilation to NIV. Although we could not determine the clinical reasons for this increase, hospital stay and mortality were unchanged. A randomized trial is needed to determine whether NIV can improve outcomes in AEs before widespread adoption makes it impossible to conduct such a trial.
PMCID: PMC4580276  PMID: 24106317
asthma; mechanical ventilation; intensive care unit
2.  Enhanced survival from radiation pneumonitis by combined irradiation to the skin 
To develop mitigators for combined irradiation to the lung and skin.
Rats were treated with X-rays as follows: (1) 12.5 or 13 Gy whole thorax irradiation (WTI) (2) 30 Gy soft X-rays to 10% area of the skin only (3) 12.5 or 13 Gy WTI+30 Gy skin irradiation after 3 hours (4) 12.5 Gy WTI+skin irradiation and treated with captopril (160 mg/m2/day) started after 7 days. Our end points were survival (primary) based on IACUC euthanization criteria and secondary measurements of breathing intervals and skin injury. Lung collagen at 210 days was measured in rats surviving 13 Gy WTI.
After 12.5 Gy WTI with or without skin irradiation, one rat (12.5 Gy WTI) was euthanized. Survival was less than 10% in rats receiving 13 Gy WTI, but was enhanced when combined with skin irradiation (p<0.0001). Collagen content increased at 210 days after 13 Gy WTI vs 13 Gy WTI+30 Gy skin irradiation (p<0.05). Captopril improved radiation-dermatitis after 12.5 Gy WTI+30 Gy skin irradiation (p=0.008).
Radiation to the skin given 3 hours after WTI mitigated morbidity during pneumonitis in rats. Captopril enhanced the rate of healing of radiation-dermatitis after combined irradiations to the thorax and skin.
PMCID: PMC4380176  PMID: 24827855
Combined radiation injuries; radiation to skin and lungs; mitigation; radiological terrorism; nuclear accident
3.  Stable EET urea agonist and soluble epoxide hydrolase inhibitor regulate rat pulmonary arteries through TRPCs 
Epoxyeicosatrienoic acids (EETs), cytochrome P450-derived metabolites of arachidonic acid, have been reported to increase intracellular calcium concentration in aortic vascular smooth muscle cells (SMCs). As EETs are labile, we synthesized a new stable urea EET analog with agonist and soluble epoxide hydrolase (sEH) inhibitor properties. We refer to this analog, 12-(3-hexylureido)dodec-8-enoic acid, as 8-HUDE. Measuring tension of vascular rings, intracellular calcium signaling by confocal laser scanning microscopy and gene expression by reverse-transcription-PCR and western blots, we examined the effects of 8-HUDE on pulmonary vascular tone and calcium signaling in rat pulmonary artery (PA) SMCs (PASMCs). 8-HUDE increased the tension of rat PAs to 145% baseline, whereas it had no effect on the tension of mesenteric arteries (MAs). The 8-HUDE-induced increase in vascular tone was abolished by removal of extracellular Ca2+ or by pretreatment with either La3+ or SKF96365, which are inhibitors of canonical transient receptor potential channels (TRPCs). Furthermore, 8-HUDE-evoked increases in [Ca2+]i in PASMCs could be blunted by inhibition of TRPC with SKF96365, removal of extracellular calcium or depletion of intracellular calcium stores with caffeine, cyclopiazonic acid or 2-aminoethoxydiphenyl borate, but not by the voltage-activated calcium channel blocker nifedipine. In addition to immediate effects on calcium signaling, 8-HUDE upregulated the expression of TRPC1 and TRPC6 at both mRNA and protein levels in rat PASMCs, whereas it suppressed the expression of sEH. Our observations suggest that 8-HUDE increases PA vascular tone through increased release of calcium from intracellular stores, enhanced [Ca2+]i influx in PASMCs through store-operated Ca2+ channels and modulated the expression of TRPC and sEH proteins in a proconstrictive manner.
PMCID: PMC4548928  PMID: 21307870
canonical transient receptor potential channel (TRPC); 8-HUDE; epoxyeicosatrienoic acids (EETs); pulmonary arteries; store-operated Ca2+ channels (SOCCs); 12-(3-hexylureido)dodec-8-enoic acid
4.  Tissue protection and endothelial cell signaling by 20-HETE analogs in intact ex vivo lung slices 
Experimental cell research  2012;318(16):2143-2152.
The capacity to follow cell type-specific signaling in intact lung remains limited. 20-hydroxyeicosatetraenoic acid (20-HETE) is an endogenous fatty acid that mediates signaling for a number of key physiologic endpoints in the pulmonary vasculature, including cell survival and altered vascular tone. We used confocal microscopy to identify enhanced reactive oxygen species (ROS) production in endothelial cell (EC)s in intact lung evoked by two stable analogs of 20-HETE, 20-5,14-HEDE (20-hydroxyeicosa-5(Z),14(Z)-dienoic acid) and 20-5,14-HEDGE (N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine). These analogs generated increased ROS in cultured pulmonary artery endothelial cells as well. 20-HETE analog treatment decreased apoptosis of pulmonary tissue exposed to hypoxia-reoxygenation (HR) ex vivo. Enhanced ROS production and apoptosis were confirmed by biochemical assays. Our studies identify physiologically critical, graded ROS from ECs in live lung tissue ex vivo treated with 20-HETE analogs and protection from HR-induced apoptosis. These methodologies create exciting possibilities for studying signaling by stable 20-HETE analogs and other factors in pulmonary endothelial and other lung cell types in their native milieu.
PMCID: PMC3749092  PMID: 22687879
dihydroethidium; eicosanoid; reactive oxygen species; TUNEL; confocal
5.  Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide 
Pulmonary Circulation  2013;3(3):578-588.
Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo.
PMCID: PMC4070795  PMID: 24618542
endotoxin; hypoxia; caspase 3; Toll-like receptor 4 (TLR4); 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT); pulmonary artery endothelial cells.
6.  Protection by 20-5,14-HEDGE Against Surgically-Induced Ischemia Reperfusion Lung Injury in Rats 
The Annals of Thoracic Surgery  2011;93(1):282-288.
We previously reported that the cytochrome P450 product 20-hydroxyeicosatetraenoic acid has prosurvival effects in pulmonary artery endothelial cells and ex vivo pulmonary arteries. We tested the potential of a 20-hydroxyeicosatetraenoic acid analog N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (20-5,14-HEDGE) to protect against lung ischemic reperfusion injury in rats. Furthermore, we examined activation of the innate immune system components high mobility group box 1 (HMGB1) and toll-like receptor 4 in this model as well as the effect of 20-5,14-HEDGE on this signaling pathway.
Sprague Dawley rats treated with 20-5,14-HEDGE or vehicle were subjected to surgically induced, unilateral lung ischemia for 60 minutes followed by reperfusion for two hours in vivo. Injury was assessed histologically by hematoxylin and eosin, and with identification of myeloperoxidase immunohistochemically. HMGB1 and toll-like receptor 4 proteins were identified by western blot. Caspase 3 activity or 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole incorporation were used to measure apoptosis and cell survival.
IR injury evoked atelectasis and hemorrhage, an influx of polymorphonuclear cells, and increased toll-like receptor 4 and HMGB1 expression. Caspase 3 activity was increased and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide incorporation was decreased. 20-5,14-HEDGE protected against each of these endpoints including infiltration of polymorphonuclear cells, with no changes in caspase 3 activity in other organs.
Lung IR produces apoptosis and activation of the innate immune system including HMGB1 and toll-like receptor 4 within two hours of reperfusion. Treatment with 20-5,14-HEDGE decreases activation of this response system, and salvages lung tissue.
PMCID: PMC3268555  PMID: 22115333
ischemia reperfusion; myeloperoxidase; HMGB1; TLR4; caspase 3
7.  Effects of a localized high-flow anastomosis between aorta and left lower lobe pulmonary artery on great vessel flow and pulmonary arterial reactivity in the contralateral lung 
To assess effects of a localized anastomosis between the aorta and left lower lobe pulmonary artery (LLLPA) on flows through central vessels, and on vascular reactivity of small PAs distal or contralateral to the shunt.
Flow rates in major vessels and tensions from small PAs from left and right lower lobes were determined 48 hours after creation of an end-to-side anastomosis of the LLLPA to the aorta.
Anastomoses increased flow through the LLLPA from 194 ± 6 to 452 ± 18 ml/min immediately after anastomosis and to 756 ± 19 ml/min by the time of harvest (n=88, p<0.05). Flow rates in main PAs from hosts with anastomoses were lower (557 ± 26 versus1033 ± 244 ml/min) while aortic root flows were not different from controls (1370 ± 53 compared to 1120 ± 111 ml/min; p = 0.07). Wet-to-dry weights of the both lungs and aortic flow rates were proportional to shunt flow rates. PA rings harvested from the right (unshunted) lobe of high flow hosts exhibited increased reactivity to the thromboxane agonist U46619 and phenylephrine relative to those of left PAs from the same animal or those of control hosts.
Our studies are the first to identify enhanced reactivity of PAs in a lung contralateral to a localized high output shunt between an aorta and pulmonary artery. These observations suggest that patients with localized systemic-to-pulmonary shunt could exhibit modified vascular tone in remote pulmonary arteries.
PMCID: PMC3022966  PMID: 21075384
pulmonary vascular resistance; arteriovenous shunt; phenylephrine; U46619
8.  Mechanisms underlying increased reactivity of pulmonary arteries contralateral to a localized high-flow anastomosis 
Our model of a systemic-pulmonary shunt exhibits enhanced reactivity of pulmonary arteries contralateral to a localized shunt between the left lower lobe pulmonary artery (LLPA) and aorta relative to those of ipsilateral or control PAs 48 hours after anastomosis. We examined the contribution of nitric oxide (NO), cyclooxygenase (COX), lipoxygenase (LOX), or cytochrome P450 (CYP) production to mediating this enhanced reactivity.
We created a surgical end-to-side anastomosis of the left lower lobe PA to the aorta. 48 hours later we tested tension of PA rings from the right and left lower lobes for contraction to the thromboxane mimetic U46619 in the presence of vehicle or inhibitors of NO synthase (S), COX, CYP, or LOX. Western blots of PA homogenates were probed for eNOS or isoforms metabolizing arachidonic acid (AA). Eicosanoid products from intact PAs rings were detected using labeled AA and HPLC separation.
Enhanced reactivity of unshunted right PAs over that of left PAs from high flow hosts was not eliminated by inhibitors of NOS, COX, or CYP. Treatment with 2 different LOX inhibitors, nordihydroguaiaretic acid and cinnamyl-3,4-dihydroxy-α-cyanocinnamate, closed the difference in contractility of shunted and unshunted PAs. PAs contralateral to shunts metabolized AA to 12-hydroxyeicosatetraenoic acid (HETE) in greater quantities than analogous PAs from the experimental left or control PAs.
48 hours after anastomosis enhanced reactivity of contralateral PAs is attributable in part to increased LOX products as opposed to NO or other eicosanoid products.
We examined the role of nitric oxide and eicosanoid products in mediating enhanced reactivity of PAs contralateral to a localized aorto-pulmonary shunt 48 hours after creation. Lipoxygense inhibitors eliminated hyperreactivity of unshunted PAs and these arteries produced more 12-HETE, supporting increased synthesis of proconstrictive lipoxygenase products in these vessels.
PMCID: PMC3052931  PMID: 21075383
Lipoxygenase; pulmonary vascular resistance; arteriovenous shunt
9.  Whole-thorax irradiation induces hypoxic respiratory failure, pleural effusions and cardiac remodeling 
Journal of Radiation Research  2014;56(2):248-260.
To study the mechanisms of death following a single lethal dose of thoracic radiation, WAG/RijCmcr (Wistar) rats were treated with 15 Gy to the whole thorax and followed until they were morbid or sacrificed for invasive assays at 6 weeks. Lung function was assessed by breathing rate and arterial oxygen saturation. Lung structure was evaluated histologically. Cardiac structure and function were examined by echocardiography. The frequency and characteristics of pleural effusions were determined. Morbidity from 15 Gy radiation occurred in all rats 5 to 8 weeks after exposure, coincident with histological pneumonitis. Increases in breathing frequencies peaked at 6 weeks, when profound arterial hypoxia was also recorded. Echocardiography analysis at 6 weeks showed pulmonary hypertension and severe right ventricular enlargement with impaired left ventricular function and cardiac output. Histologic sections of the heart revealed only rare foci of lymphocytic infiltration. Total lung weight more than doubled. Pleural effusions were present in the majority of the irradiated rats and contained elevated protein, but low lactate dehydrogenase, when compared with serum from the same animal. Pleural effusions had a higher percentage of macrophages and large monocytes than neutrophils and contained mast cells that are rarely present in other pathological states. Lethal irradiation to rat lungs leads to hypoxia with infiltration of immune cells, edema and pleural effusion. These changes may contribute to pulmonary vascular and parenchymal injury that result in secondary changes in heart structure and function. We report that conditions resembling congestive heart failure contribute to death during radiation pneumonitis, which indicates new targets for therapy.
PMCID: PMC4380043  PMID: 25368342
radiation pneumonitis; mast cells; right ventricular mass; tachypnea
10.  Enalapril Mitigates Radiation-Induced Pneumonitis and Pulmonary Fibrosis if Started 35 Days after Whole-Thorax Irradiation 
Radiation research  2013;180(5):546-552.
Victims of a radiological attack or nuclear accident may receive high-dose, heterogeneous exposures from radiation to the chest that lead to lung damage. Our goal is to develop countermeasures to mitigate such injuries. We used WAG/RijCmcr rats receiving 13 Gy to the whole thorax to induce pulmonary fibrosis within 210 days. The angiotensin converting enzyme (ACE) inhibitor enalapril was evaluated as a mitigator of these injuries at two doses (18 and 36 mg/m2/day) and 8 schedules: starting at 7, 35, 70, 105 and 140 days and continuing to 210 days or starting at 7 days and stopping at 30, 60 or 90 days after whole-thorax irradiation. The earliest start date at 7 days after irradiation would provide an adequate window of time for triage and dosimetry. Survival after 35 days, as permitted by our Institutional Animal Care and Use Committee (IACUC) was also recorded as a primary end point of pneumonitis. Pulmonary fibrosis was evaluated using the Sircol biochemical assay to measure lung collagen. Our results indicated that a short course of either dose of enalapril from 7–90 days improved survival. However, pulmonary fibrosis was only mitigated by the higher dose of enalapril (36 mg/m2/day). The latest effective start date for the drug was 35 days after irradiation. These results indicate that ACE inhibitors can be started at least a month after irradiation for mitigation of pneumonitis and/or pulmonary fibrosis.
PMCID: PMC3895940  PMID: 24131041
11.  20-HETE increases Superoxide production and activates NADPH Oxidase in Pulmonary Artery Endothelial Cells 
Reactive oxygen species (ROS) signal vital physiological processes including cell growth, angiogenesis, contraction, and relaxation of vascular smooth muscle. Because cytochrome P-450 family 4 (CYP4)/20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to enhance angiogenesis, pulmonary vascular tone, and endothelial nitric oxide synthase function, we explored the potential of this system to stimulate bovine pulmonary artery endothelial cell (BPAEC) ROS production. Our data are the first to demonstrate that 20-HETE increases ROS in BPAECs in a time- and concentration-dependent manner as detected by enhanced fluorescence of oxidation products of dihydroethidium (DHE) and dichlorofluorescein diacetate. An analog of 20-HETE elicits no increase in ROS and blocks 20-HETE-evoked increments in DHE fluorescence, supporting its function as an antagonist. Endothelial cells derived from bovine aortas exhibit enhanced ROS production to 20-HETE quantitatively similar to that of BPAECs. 20-HETE-induced ROS production in BPAECs is blunted by pretreatment with polyethylene-glycolated SOD, apocynin, inhibition of Rac1, and a peptide-based inhibitor of NADPH oxidase subunit p47phox association with gp91. These data support 20-HETE-stimulated, NADPH oxidase-derived, and Rac1/2-dependent ROS production in BPAECs. 20-HETE promotes translocation of p47phox and tyrosine phosphorylation of p47phox in a time-dependent manner as well as increased activated Rac1/2, providing at least three mechanisms through which 20-HETE activates NADPH oxidase. These observations suggest that 20-HETE stimulates ROS production in BPAECs at least in part through activation of NADPH oxidase within minutes of application of the lipid.
PMCID: PMC2586843  PMID: 18296498
Superoxide; RAC1/2; Hydrogen Peroxide; Tempol; CYP4A; ROS
12.  Surface Fluorescence Studies of Tissue Mitochondrial Redox State in Isolated Perfused Rat Lungs 
Annals of biomedical engineering  2012;41(4):827-836.
We designed a fiber-optic-based optoelectronic fluorometer to measure emitted fluorescence from the auto-fluorescent electron carriers NADH and FAD of the mitochondrial electron transport chain (ETC). The ratio of NADH to FAD is called the redox ratio (RR = NADH/FAD) and is an indicator of the oxidoreductive state of tissue. We evaluated the fluorometer by measuring the fluorescence intensities of NADH and FAD at the surface of isolated, perfused rat lungs. Alterations of lung mitochondrial metabolic state were achieved by the addition of rotenone (complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor) and/or pentachlorophenol (PCP, uncoupler) into the perfusate recirculating through the lung. Rotenone- or KCN-containing perfusate increased RR by 21% and 30%, respectively. In contrast, PCP-containing perfusate decreased RR by 27%. These changes are consistent with the established effects of rotenone, KCN, and PCP on the redox status of the ETC. Addition of blood to perfusate quenched NADH and FAD signal, but had no effect of RR. This study demonstrates the capacity of fluorometry to detect a change in mitochondrial redox state in isolated perfused lungs, and suggests the potential of fluorometry for use in in vivo experiments to extract a sensitive measure of lung tissue’s health in real-time.
PMCID: PMC3606690  PMID: 23238793
Lung surface fluorometry; Nicotinamide Adenine Dinucleotide (NADH); Flavin Adenine Dinucleotide (FADH2); mitochondrial redox
13.  Enalapril Mitigates Focal Alveolar Lesions, A Histological Marker of Late Pulmonary Injury by Radiation to the Lung 
Radiation research  2013;179(4):465-474.
The goal of our study was to identify a histological marker for testing countermeasures for mitigation of late radiation injury to the lung. Pulmonary fibrosis is currently the best described “late effect” in survivors of acute radiation pneumonitis. However, robust fibrosis does not develop in some rodent strains for years after a single dose of radiation to the whole thorax. We observed radiation-associated focal alveolar lesions that were rich in giant cells and macrophages containing cholesterol clefts in the lungs of irradiated WAG/ RijCmcr rats. These lesions were first observed after pneumonitis, around 21 weeks after receiving a radiation dose of 13 Gy to the thorax but not until 71 weeks in unirradiated rats. The number of cholesterol clefts increased with time after irradiation through 64 weeks of observation, and at 30 weeks after 13 Gy, cholesterol clefts were associated with several indices of deterioration in lung function. The number of cholesterol clefts in irradiated lung sections were reduced by the angiotensin converting enzyme (ACE) inhibitor enalapril (25–42 mg/m2/day) from 18.7 ± 4.2/lung section to 6.8 ± 2.4 (P = 0.029), 5.2 ± 1.9 (P = 0.0051) and 6.7 ± 1.9 (P = 0.029) when the drug was started at 1 week, 5 or 15 weeks after irradiation, respectively, and continued. Similar lesions have been previously observed in the lungs of one strain of irradiated mice and in patients following radiotherapy. We propose that alveolar lesions with cholesterol clefts may be used as a histological marker of the severity of radiation lung injury and to study its mitigation in WAG/
PMCID: PMC3697111  PMID: 23480564
14.  Rattus Model Utilizing Selective Pulmonary Ischemia Induces Bronchiolitis Obliterans Organizing Pneumonia 
Shock (Augusta, Ga.)  2013;39(3):271-277.
Bronchiolitis obliterans organizing pneumonia (BOOP), a morbid condition when associated with lung transplant and chronic lung disease, is believed to be a complication of ischemia. Our goal was to develop a simple and reliable model of lung ischemia in the Sprague-Dawley rat that would produce BOOP.
Unilateral ischemia without airway occlusion was produced by an occlusive slipknot placed around the left main pulmonary artery. Studies were performed 7 days later. Relative pulmonary and systemic flow to each lung was measured by injection of 99mTc-macroaggregated albumin. Histological sections were examined for structure and necrosis and scored for BOOP. Apoptosis was detected by immunohistochemistry with an antibody against cleaved caspase-3.
Pulmonary artery blood flow to left lungs was <0.1% of the cardiac output, and bronchial artery circulation was ~2% of aortic artery flow. Histological sections from ischemic left lungs consistently showed Masson bodies, inflammation and young fibroblasts filling the distal airways and alveoli, consistent with BOOP. Quantitative evaluation of BOOP using epithelial changes, inflammation and fibrosis were higher in ischemic left lungs than right or sham-operated left lungs. Apoptosis was increased in areas exhibiting histological BOOP, but there was no histological evidence of necrosis. TLR4 expression was increased in ischemic left lungs over right.
An occlusive slipknot around the main left PA in rats produces BOOP, providing direct evidence that ischemia without immunomodulation or coinfection is sufficient to initiate this injury. It also affords an excellent model to study signaling and genetic mechanisms underlying BOOP.
PMCID: PMC3578046  PMID: 23364425
Lung transplant; pulmonary artery; graft loss; reperfusion; TLR4
15.  Clinical CVVH model removes endothelium-derived microparticles from circulation 
Journal of Extracellular Vesicles  2014;3:10.3402/jev.v3.23498.
Endothelium-derived microparticles (EMPs) are submicron vesicles released from the plasma membrane of endothelial cells in response to injury, apoptosis or activation. We have previously demonstrated EMP-induced acute lung injury (ALI) in animal models and endothelial barrier dysfunction in vitro. Current treatment options for ALI are limited and consist of supportive therapies. We hypothesize that standard clinical continuous venovenous hemofiltration (CVVH) reduces serum EMP levels and may be adapted as a potential therapeutic intervention.
Materials and methods
EMPs were generated from plasminogen activation inhibitor-1 (PAI-1)-stimulated human umbilical vein endothelial cells (HUVECs). Flow cytometric analysis was used to characterize EMPs as CD31- and annexin V-positive events in a submicron size gate. Enumeration was completed against a known concentration of latex beads. Ultimately, a concentration of ~650,000 EMP/mL perfusate fluid (total 470 mL) was circulated through a standard CVVH filter (pore size 200 μm, flow rate 250 mL/hr) for a period of 70 minutes. 0.5 mL aliquots were removed at 5- to 10-minute intervals for flow cytometric analysis. EMP concentration in the dialysate was measured at the end of 4 hours to better understand the fate of EMPs.
A progressive decrease in circulating EMP concentration was noted using standard CVVH at 250 mL/hr (a clinical standard rate) from a 470 mL volume modelling a patient's circulation. A 50% reduction was noted within the first 30 minutes. EMPs entering the dialysate after 4 hours were 5.7% of the EMP original concentration.
These data demonstrate that standard CVVH can remove EMPs from circulation in a circuit modelling a patient. An animal model of hemofiltration with induction of EMP release is required to test the therapeutic potential of this finding and potential of application in early treatment of ALI.
PMCID: PMC3938801  PMID: 24596654
acute lung injury; microparticles; dialysis; endothelium
16.  Mitigation of Radiation Induced Pulmonary Vascular Injury by Delayed Treatment with Captopril 
Respirology (Carlton, Vic.)  2012;17(8):10.1111/j.1440-1843.2012.02247.x.
Background and objective
A single dose of 10 Gy radiation to the thorax of rats results in decreased total lung angiotensin-converting enzyme (ACE) activity, pulmonary artery distensibility and distal vascular density while increasing pulmonary vascular resistance (PVR) at 2-months post-exposure. In this study we evaluate the potential of a renin-angiotensin system (RAS) modulator, the ACE inhibitor captopril, to mitigate this pulmonary vascular damage.
Rats exposed to 10 Gy thorax only irradiation and age-matched controls were studied 2-months after exposure, during the development of radiation pneumonitis. Rats were treated, either immediately or 2-weeks after radiation exposure, with 2 doses of the ACE inhibitor, captopril, dissolved in their drinking water. To determine pulmonary vascular responses, we measured pulmonary hemodynamics, lung ACE activity, pulmonary arterial distensibility, and peripheral vessel density.
Captopril, given at a vasoactive but not a lower dose, mitigated radiation-induced pulmonary vascular injury. More importantly these beneficial effects were observed even if drug therapy was delayed for up to two weeks after exposure.
Captopril resulted in a reduction in pulmonary vascular injury that supports its use as a radiomitigator after an unexpected radiological event such as a nuclear accident.
PMCID: PMC3848310  PMID: 22882664
captopril; injury; lung; therapeutics; radiation; pneumonitis
17.  Short-Term Treatment with a SOD/Catalase Mimetic, EUK-207, Mitigates Pneumonitis and Fibrosis after Single-Dose Total-Body or Whole-Thoracic Irradiation 
Radiation research  2012;178(5):468-480.
In the event of a radiological accident or terrorist attack, whole- or partial-body exposure can injure the lungs. To simulate such an incident, we used a single fraction of total-body irradiation (TBI) or whole-thoracic irradiation to induce pneumonitis or pulmonary fibrosis, respectively, in a rat model. The superoxide dismutase and catalase mimetic EUK-207 was given by subcutaneous injection (20 mg/kg/day, 5 days per week, once daily) starting at 7 days after irradiation and stopping before pneumonitis developed. After TBI, morbidity and the increase in breathing rates associated with pneumonitis were significantly improved in rats treated with EUK-207 compared to rats receiving irradiation alone. At 42 days after TBI (the peak of pneumonitis) changes in vascular end points including pulmonary hemodynamics ex vivo and relative arterial density in lungs were also mitigated by EUK-207. At 7 months after whole-thoracic irradiation, EUK-207 reduced synthesis of collagen as assessed by the Sircol collagen assay and Masson’s trichrome staining. Our results demonstrate promise for EUK-207 as a mitigator of radiation pneumonitis and fibrosis. We also demonstrate for the first time mitigation of multiple vascular injuries in the irradiated lung in vivo by EUK-207.
PMCID: PMC3678766  PMID: 23020094
18.  Dose-modifying factor for captopril for mitigation of radiation injury to normal lung 
Journal of radiation research  2012;53(4):633-640.
Our goal is to develop countermeasures for pulmonary injury following unpredictable events such as radiological terrorism or nuclear accidents. We have previously demonstrated that captopril, an angiotensin converting enzyme (ACE) inhibitor, is more effective than losartan, an angiotensin type-1 receptor blocker, in mitigating radiation-pneumopathy in a relevant rodent model. In the current study we determined the dose modifying factors (DMFs) of captopril for mitigation of parameters of radiation pneumonitis. We used a whole animal model, irradiating 9–10-week-old female rats derived from a Wistar strain (WAG/RijCmcr) with a single dose of irradiation to the thorax of 11, 12, 13, 14 or 15 Gy. Our study develops methodology to measure DMFs for morbidity (survival) as well as physiological endpoints such as lung function, taking into account attrition due to lethal radiation-induced pneumonitis. Captopril delivered in drinking water (140–180 mg/m2/day, comparable with that given clinically) and started one week after irradiation has a DMF of 1.07–1.17 for morbidity up to 80 days (survival) and 1.21–1.35 for tachypnea at 42 days (at the peak of pneumonitis) after a single dose of ionizing radiation (X-rays). These encouraging results advance our goals, since DMF measurements are essential for drug labeling and comparison with other mitigators.
PMCID: PMC3393339  PMID: 22843631
radiation-pneumopathy; DMF; DRF; ACE inhibitors; breathing rate
19.  Radiation damage to the lung: mitigation by angiotensin converting enzyme (ACE) inhibitors 
Respirology (Carlton, Vic.)  2012;17(1):66-71.
Concern regarding accidental overexposure to radiation has been raised after the devastating Tohuku earthquake and tsunami which initiated the Fukushima Daiichi nuclear disaster in Japan, in March 2011. Radiation exposure is toxic and can be fatal depending on the dose received. Injury to the lung is often reported as part of multi-organ failure in victims of accidental exposures. Doses of radiation >8 Gray to the chest can induce pneumonitis with right ventricular hypertrophy starting after ~2 months. Higher doses may be followed by pulmonary fibrosis that presents months to years after exposure. Though the exact mechanisms of radiation lung damage are not known, experimental animal models have been widely used to study this injury. Rodent models for pneumonitis and fibrosis exhibit vascular, parenchymal and pleural injuries to the lung. Inflammation is a part of the injuries suggesting involvement of the immune system. Researchers world-wide have tested a number of interventions to prevent or mitigate radiation lung injury. One of the first and most successful class of mitigators are inhibitors of angiotensin converting enzyme (ACE), an enzyme that is abundant in the lung. These results offer hope that lung injury from radiation accidents may be mitigated, since the ACE inhibitor captopril was effective when started up to one week after irradiation.
PMCID: PMC3245332  PMID: 22023053
captopril; lung fibrosis; mitigation; radiation pneumonitis; nuclear accident; radiological terrorism
20.  Angiotensin Converting Enzyme Inhibitors Mitigate Collagen Synthesis Induced by a Single Dose of Radiation to the Whole Thorax 
Journal of Radiation Research  2012;53(1):10-17.
Our long-term goal is to use angiotensin converting enzyme (ACE) inhibitors to mitigate the increase in lung collagen synthesis that is induced by irradiation to the lung, which could result from accidental exposure or radiological terrorism. Rats (WAG/RijCmcr) were given a single dose of 13 Gy (dose rate of 1.43 Gy/min) of X-irradiation to the thorax. Three structurally-different ACE inhibitors, captopril, enalapril and fosinopril were provided in drinking water beginning 1 week after irradiation. Rats that survived acute pneumonitis (at 6–12 weeks) were evaluated monthly for synthesis of lung collagen. Other endpoints included breathing rate, wet to dry lung weight ratio, and analysis of lung structure. Treatment with captopril (145–207 mg/m2/day) or enalapril (19–28 mg/m2/day), but not fosinopril (19–28 mg/m2/day), decreased morbidity from acute pneumonitis. Lung collagen in the surviving irradiated rats was increased over that of controls by 7 months after irradiation. This increase in collagen synthesis was not observed in rats treated with any of the three ACE inhibitors. Analysis of the lung morphology at 7 months supports the efficacy of ACE inhibitors against radiation-induced fibrosis. The effectiveness of fosinopril against fibrosis, but not against acute pneumonitis, suggests that pulmonary fibrosis may not be a simple consequence of injury during acute pneumonitis. In summary, three structurally-different ACE inhibitors mitigate the increase in collagen synthesis 7 months following irradiation of the whole thorax and do so, even when therapy is started one week after irradiation.
PMCID: PMC3616750  PMID: 22302041
Lung fibrosis; Mitigation; Angiotensin converting enzyme inhibitors
21.  8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway 
Experimental cell research  2010;316(14):2340-2353.
Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid (AA) catalyzed by cytochrome P450 (CYP), have many essential biologic roles in the cardiovascular system including inhibition of apoptosis in cardiomyocytes. In the present study, we tested the potential of 8,9-EET and derivatives to protect pulmonary artery smooth muscle cells (PASMCs) from starvation induced apoptosis. We found 8,9-epoxy-eicos-11(Z)-enoic acid (8,9-EET analog(214)), but not 8,9-EET, increased cell viability, decreased activation of caspase-3 and caspase-9, and decreased TUNEL-positive cells or nuclear condensation induced by serum deprivation (SD) in PASMCs. These effects were reversed after blocking the Rho-kinase (ROCK) pathway with Y-27632 or HA-1077. Therefore, 8,9-EET analog(214) protects PASMC from serum deprivation-induced apoptosis, mediated at least in part via the ROCK pathway. Serum deprivation of PASMCs resulted in mitochondrial membrane depolarization, decreased expression of Bcl-2 and enhanced expression of Bax, all effects were reversed by 8,9-EET analog(214) in a ROCK dependent manner. Because 8,9-EET and not the 8,9-EET analog(214) protects pulmonary artery endothelial cells (PAECs), these observations suggest the potential to differentially promote apoptosis or survival with 8,9-EET or analogs in pulmonary arteries.
PMCID: PMC2927814  PMID: 20493836
8,9-EET; PASMCs; Rho-kinase; apoptosis; 8,9-EET analog
22.  Cellular Inflammatory Infiltrate in Pneumonitis Induced by a Single Moderate Dose of Thoracic X Radiation in Rats 
Radiation research  2010;173(4):545-556.
The goal of these studies was to characterize the infiltrating inflammatory cells during pneumonitis caused by moderate doses of radiation. Two groups of male rats (WAG/RijCmcr, 8 weeks old) were treated with single 10- or 15-Gy doses of thoracic X radiation; a third group of age-matched animals served as controls. Only 25% rats survived the 15-Gy dose. Bronchoalveolar lavage fluid and whole lung mounts were subjected to cytological and histological evaluation after 8 weeks for distribution of resident macrophages, neutrophils, lymphocytes and mast cells. There was a modest increase in airway and airspace-associated neutrophils in lungs from rats receiving 15 Gy. Mast cells (detected by immunohistochemistry for tryptase) increased over 70% with 10 Gy and over 13-fold after 15 Gy, with considerable leakage of tryptase into blood vessels and airways. Circulating levels of eight inflammatory cytokines were not altered after 10 Gy but appeared to decrease after 15 Gy. In summary, there were only modest increases in cellular inflammatory infiltrate during pneumonitis after a non-lethal dose of 10 Gy, but there was a dramatic rise in mast cell infiltration after 15 Gy, suggesting that circulating levels of mast cell products may be useful markers of severe pneumonitis.
PMCID: PMC2904484  PMID: 20334527
23.  Renin-Angiotensin System Suppression Mitigates Experimental Radiation Pneumonitis 
To find mitigators of pneumonitis induced by moderate doses of thoracic radiation (10–15 Gy).
Materials and Methods
Unanesthetized WAG/RijCmcr female rats received single doses of X-irradiation (10, 12 or 15 Gy at 1.615 Gy/minute) to the thorax. Captopril (an angiotensin converting enzyme inhibitor) or losartan (an angiotensin receptor blocker) was administered in drinking water after irradiation. Pulmonary structure and function were assessed after 8 weeks in randomly selected rats by evaluating breathing rate, ex vivo vascular reactivity and histopathology. Survival analysis was undertaken on all animals except those scheduled for sacrifice.
Survival following a dose of 10 Gy to the thorax was not different from unirradiated rats up to one year. Survival decreased to less than 50%, by 45 weeks after 12 Gy and by 8–9 weeks after 15 Gy. Captopril (17–56 mg/kg/day) improved survival and reduced radiation-induced increases in breathing rate, changes in vascular reactivity and histopathological evidence of injury. Radiation-induced increases in breathing rate were prevented even if captopril was started 1 week following irradiation or if it was discontinued after 5 weeks. Losartan, though effective in reducing mortality was not as efficacious as captopril in mitigating radiation-induced increases in breathing rate or altered vasoreactivity.
In rats, a moderate thoracic dose of radiation induced pneumonitis and morbidity. These injuries were mitigated by captopril even when it was commenced 1 week after irradiation or if discontinued after 5 weeks following exposure. Losartan was less effective in protecting against radiation-induced changes in vascular reactivity or tachypnea.
PMCID: PMC2800372  PMID: 19931735
Radiation injury; mitigation; lung function; angiotensin converting enzyme (ACE) inhibitors
24.  Role of JNK in network formation of human lung microvascular endothelial cells 
The signaling mechanisms in vasculogenesis and/or angiogenesis remain poorly understood, limiting the ability to regulate growth of new blood vessels in vitro and in vivo. Cultured human lung microvascular endothelial cells align into tubular networks in the three-dimensional matrix, Matrigel. Overexpression of MAPK phosphatase-1 (MKP-1), an enzyme that inactivates the ERK, JNK, and p38 pathways, inhibited network formation of these cells. Adenoviral-mediated overexpression of recombinant MKP-3 (a dual specificity phosphatase that specifically inactivates the ERK pathway) and dominant negative or constitutively active MEK did not attenuate network formation in Matrigel compared with negative controls. This result suggested that the ERK pathway may not be essential for tube assembly, a conclusion which was supported by the action of specific MEK inhibitor PD 184352, which also did not alter network formation. Inhibition of the JNK pathway using SP-600125 or L-stereoisomer (L-JNKI-1) blocked network formation, whereas the p38 MAPK blocker SB-203580 slightly enhanced it. Inhibition of JNK also attenuated the number of small vessel branches in the developing chick chorioallantoic membrane. Our results demonstrate a specific role for the JNK pathway in network formation of human lung endothelial cells in vitro while confirming that it is essential for the formation of new vessels in vivo.
PMCID: PMC2904476  PMID: 18263671
mitogen-activated protein kinase; extracellular signal-regulated kinase; mitogen-activated protein kinase phosphatase; dominant negative mitogen-activated protein kinase-extracellular signal-regulated kinase kinase; PD 184352
25.  Protective actions of epoxyeicosatrienoic acid: Dual targeting of cardiovascular PI3K and KATP channels 
Epoxyeicosatrienoic acid(s) (EETs) have been shown to protect cardiovascular tissue against apoptosis dependent on activation of targets such as ATP-sensitive K+ (KATP) channels (sarcolemmal and mitochondrial), calcium-activated K+ channels, extracellular signal-regulated kinase or phosphoinositide 3-kinase (PI3K). We tested if EETs protect human atrial tissue ex vivo from hypoxia/reoxygenation (H/R) injury, and compared our results with myocardium from two rodent species, rats and mice. EETs reduced myocardial caspase 3 activity in all three species and protected against loss of mitochondrial membrane potential in primary cultures of neonatal rat ventricular myocytes submitted to H/R. In addition, EETs protected mouse pulmonary arteries ex vivo exposed to H/R. Myocardium and pulmonary arteries from genetically engineered mice having elevated plasma levels of EETs (Ephx2−/−) exhibited protection from H/R-induced injury over that of wild type controls, suggesting that endogenously produced EETs may have pro-survival effects. Electrophysiological studies in myocytes demonstrated that EETs can stimulate KATP currents in the absence of PI3K. Similarly, activation of PI3K/Akt occurred in the presence of the KATP channel blocker glibenclamide. Based upon loss of EETs protection in the presence of either wortmannin (a PI3K inhibitor) or glibenclamide, simultaneous activation of at least 2 pathways, PI3K and KATP channels respectively, appears to be required for protection. In conclusion, we demonstrate that exogenous and endogenous EETs have powerful pro-survival effects in cardiovascular tissues including diseased human myocardium, mediated by activation of not only one but at least two pathways, PI3K and KATP channels.
PMCID: PMC2796716  PMID: 19336274
human myocardium; pulmonary artery; hypoxia/reoxygenation; mitochondrial membrane potential; epoxide hydrolase; lactate dehydrogenase release

Results 1-25 (30)