PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  COPD exacerbation severity and frequency is associated with impaired macrophage efferocytosis of eosinophils 
BMC Pulmonary Medicine  2014;14:112.
Background
Eosinophilic airway inflammation is observed in 10-30% of COPD subjects. Whether increased eosinophils or impairment in their clearance by macrophages is associated with the severity and frequency of exacerbations is unknown.
Methods
We categorised 103 COPD subjects into 4 groups determined by the upper limit of normal for their cytoplasmic macrophage red hue (<6%), an indirect measure of macrophage efferocytosis of eosinophils, and area under the curve sputum eosinophil count (≥3%/year). Eosinophil efferocytosis by monocyte-derived macrophages was studied in 17 COPD subjects and 8 normal controls.
Results
There were no differences in baseline lung function, health status or exacerbation frequency between the groups: A-low red hue, high sputum eosinophils (n = 10), B-high red hue, high sputum eosinophils (n = 16), C-low red hue, low sputum eosinophils (n = 19) and D- high red hue, low sputum eosinophils (n = 58). Positive bacterial culture was lower in groups A (10%) and B (6%) compared to C (44%) and D (21%) (p = 0.01). The fall in FEV1 from stable to exacerbation was greatest in group A (ΔFEV1 [95 % CI] -0.41 L [-0.65 to -0.17]) versus group B (-0.16 L [-0.32 to -0.011]), C (-0.11 L [-0.23 to -0.002]) and D (-0.16 L [-0.22 to -0.10]; p = 0.02). Macrophage efferocytosis of eosinophils was impaired in COPD versus controls (86 [75 to 92]% versus 93 [88 to 96]%; p = 0.028); was most marked in group A (71 [70 to 84]%; p = 0.0295) and was inversely correlated with exacerbation frequency (r = -0.63; p = 0.006).
Conclusions
Macrophage efferocytosis of eosinophils is impaired in COPD and is related to the severity and frequency of COPD exacerbations.
doi:10.1186/1471-2466-14-112
PMCID: PMC4115214  PMID: 25007795
COPD; Eosinophils; Efferocytosis; Exacerbation
2.  Fibrocyte localization to the airway smooth muscle is a feature of asthma 
Background
Airway smooth muscle (ASM) hyperplasia is a hallmark of asthma that is associated with disease severity and persistent airflow obstruction.
Objectives
We sought to investigate whether fibrocytes, a population of peripheral blood mesenchymal progenitors, are recruited to the ASM compartment in asthma.
Methods
We assessed the number of fibrocytes in bronchial biopsy specimens and peripheral blood from subjects with mild-to-severe refractory asthma versus healthy control subjects. In vitro we investigated potential mechanisms controlling fibrocyte migration toward the ASM bundle.
Results
Fifty-one subjects with asthma and 33 control subjects were studied. In bronchial biopsy specimens, the number of fibrocytes was increased in the lamina propria of subjects with severe refractory asthma (median [interquartile range] number, 1.9/mm2 [1.7/mm2]) versus healthy control subjects (median [interquartile range] number, 0/mm2 [0.3/mm2], P < .0001) and in the ASM bundle of subjects with asthma of all severities (subjects with severe asthma, median [interquartile range] number, 3.8/mm2 [9.4/mm2]; subjects with mild-to-moderate asthma, median [interquartile range] number, 1.1/mm2 [2.4/mm2]); healthy control subjects, (median [interquartile range] number, 0/mm2 [0/mm2]); P = .0004). In the peripheral blood the fibrocyte number was also increased in subjects with severe refractory asthma (median [interquartile range] number, 1.4 × 104/mL [2.6 × 104/mL]) versus healthy control subjects (median [interquartile range] number, 0.4 × 104/mL [1.0 × 104/mL], P = .002). We identified that in vitro ASM promotes fibrocyte chemotaxis and chemokinesis (distance of migration after 4.5 hours, 31 μm [2.9 μm] vs 17 μm [2.4 μm], P = .0001), which was in part mediated by platelet-derived growth factor (mean inhibition by neutralizing antibody, 16% [95% CI, 2% to 32%], P = .03) but not by activation of chemokine receptors.
Conclusion
This study provides the first evidence that fibrocytes are present in the ASM compartment in asthma and that ASM can augment fibrocyte migration. The importance of fibrocytes in the development of ASM hyperplasia and airway dysfunction in asthma remains to be determined.
doi:10.1016/j.jaci.2008.10.048
PMCID: PMC3992369  PMID: 19081612
Asthma; airway smooth muscle; remodeling; mast cells
3.  Eosinophil protein in airway macrophages: A novel biomarker of eosinophilic inflammation in patients with asthma 
Background
Noneosinophilic asthma is common across asthma severities. However, in patients with moderate-to-severe disease, the absence of sputum eosinophilia cannot distinguish between asthmatic subjects with eosinophilic inflammation controlled by corticosteroids versus those in whom eosinophilic inflammation is not a component of the disease.
Objectives
We sought to develop a method to quantify eosinophil proteins in airway macrophages as a novel biomarker of eosinophilic airway inflammation.
Methods
Eosinophil proteins in airway macrophages were assessed by means of flow cytometry, immunofluorescence, and cytoplasmic hue change after ingestion of apoptotic eosinophils. Airway macrophage median percentage of red-hued area in stained sputum cytospin preparations was assessed by means of image analysis from (1) subjects with mild-to-severe asthma, subjects with nonasthmatic eosinophilic bronchitis, and healthy control subjects; (2) subjects with eosinophilic severe asthma after treatment with prednisolone; and (3) subject with noneosinophilic asthma before corticosteroid withdrawal.
Results
Eosinophil proteins were detected in airway macrophages, and cytoplasmic red hue increased after ingestion of apoptotic eosinophils. Airway macrophage percentage red-hued area was increased in subjects with moderate-to-severe asthma compared with that seen in subjects with mild asthma and healthy control subjects, was similar in those with or without a sputum eosinophilia, and was increased after corticosteroid therapy. In asthmatic subjects without sputum eosinophilia, the airway macrophage percentage red-hued area was increased in subjects who did versus those who did not have sputum eosinophilia after corticosteroid withdrawal.
Conclusions
Eosinophil proteins can be reliably measured in airway macrophages. In combination with sputum eosinophilia, the macrophage eosinophil protein content might further define the asthma phenotype and provide an additional tool to direct therapy.
doi:10.1016/j.jaci.2010.03.026
PMCID: PMC3992372  PMID: 20639010
Asthma; macrophage; eosinophil; computer-assisted image analysis; induced sputum
4.  Human Airway Smooth Muscle Promotes Human Lung Mast Cell Survival, Proliferation, and Constitutive Activation: Cooperative Roles for CADM1, Stem Cell Factor, and IL-61 
The microlocalization of mast cells within specific tissue compartments is thought to be critical for the pathophysiology of many diverse diseases. This is particularly evident in asthma where they localize to the airway smooth muscle (ASM) bundles. Mast cells are recruited to the ASM by numerous chemoattractants and adhere through CADM1, but the functional consequences of this are unknown. In this study, we show that human ASM maintains human lung mast cell (HLMC) survival in vitro and induces rapid HLMC proliferation. This required cell-cell contact and occurred through a cooperative interaction between membrane-bound stem cell factor (SCF) expressed on ASM, soluble IL-6, and CADM1 expressed on HLMC. There was a physical interaction in HLMC between CADM1 and the SCF receptor (CD117), suggesting that CADM1-dependent adhesion facilitates the interaction of membrane-bound SCF with its receptor. HLMC-ASM coculture also enhanced constitutive HLMC degranulation, revealing a novel smooth muscle-driven allergen-independent mechanism of chronic mast cell activation. Targeting these interactions in asthma might offer a new strategy for the treatment of this common disease.
PMCID: PMC3992374  PMID: 18684968
5.  Airway Smooth Muscle Hypercontractility in Asthma 
Journal of Allergy  2013;2013:185971.
In recent years, asthma has been defined primarily as an inflammatory disorder with emphasis on inflammation being the principle underlying pathophysiological characteristic driving airway obstruction and remodelling. Morphological abnormalities of asthmatic airway smooth muscle (ASM), the primary structure responsible for airway obstruction seen in asthma, have long been described, but surprisingly, until recently, relatively small number of studies investigated whether asthmatic ASM was also fundamentally different in its functional properties. Evidence from recent studies done on single ASM cells and on ASM-impregnated gel cultures have shown that asthmatic ASM is intrinsically hypercontractile. Several elements of the ASM contraction apparatus in asthmatics and in animal models of asthma have been found to be different from nonasthmatics. These differences include some regulatory contractile proteins and also some components of both the calcium-dependent and calcium-independent contraction signalling pathways. Furthermore, oxidative stress was also found to be heightened in asthmatic ASM and contributes to hypercontractility. Understanding the abnormalities and mechanisms driving asthmatic ASM hypercontractility provides a great potential for the development of new targeted drugs, other than the conventional current anti-inflammatory and bronchodilator therapies, to address the desperate unmet need especially in patients with severe and persistent asthma.
doi:10.1155/2013/185971
PMCID: PMC3613096  PMID: 23577039
6.  Increased Nicotinamide Adenine Dinucleotide Phosphate Oxidase 4 Expression Mediates Intrinsic Airway Smooth Muscle Hypercontractility in Asthma 
Rationale: Asthma is characterized by disordered airway physiology as a consequence of increased airway smooth muscle contractility. The underlying cause of this hypercontractility is poorly understood.
Objectives: We sought to investigate whether the burden of oxidative stress in airway smooth muscle in asthma is heightened and mediated by an intrinsic abnormality promoting hypercontractility.
Methods: We examined the oxidative stress burden of airway smooth muscle in bronchial biopsies and primary cells from subjects with asthma and healthy controls. We determined the expression of targets implicated in the control of oxidative stress in airway smooth muscle and their role in contractility.
Measurements and Main Results: We found that the oxidative stress burden in the airway smooth muscle in individuals with asthma is heightened and related to the degree of airflow obstruction and airway hyperresponsiveness. This was independent of the asthmatic environment as in vitro primary airway smooth muscle from individuals with asthma compared with healthy controls demonstrated increased oxidative stress–induced DNA damage together with an increased production of reactive oxygen species. Genome-wide microarray of primary airway smooth muscle identified increased messenger RNA expression in asthma of NADPH oxidase (NOX) subtype 4. This NOX4 overexpression in asthma was supported by quantitative polymerase chain reaction, confirmed at the protein level. Airway smooth muscle from individuals with asthma exhibited increased agonist-induced contraction. This was abrogated by NOX4 small interfering RNA knockdown and the pharmacological inhibitors diphenyleneiodonium and apocynin.
Conclusions: Our findings support a critical role for NOX4 overexpression in asthma in the promotion of oxidative stress and consequent airway smooth muscle hypercontractility. This implicates NOX4 as a potential novel target for asthma therapy.
doi:10.1164/rccm.201107-1281OC
PMCID: PMC3402550  PMID: 22108207
asthma; airway smooth muscle; airway hyperresponsiveness; NOX4; SOD2
7.  [Ca2+]i oscillations in ASM: Relationship with persistent airflow obstruction in asthma 
Respirology (Carlton, Vic.)  2014;19(5):763-766.
The cause of airway smooth muscle (ASM) hypercontractility in asthma is not fully understood. The relationship of spontaneous intracellular calcium oscillation frequency in ASM to asthma severity was investigated. Oscillations were increased in subjects with impaired lung function abolished by extracellular calcium removal, attenuated by caffeine and unaffected by verapamil or nitrendipine. Whether modulation of increased spontaneous intracellular calcium oscillations in ASM from patients with impaired lung function represents a therapeutic target warrants further investigation.
doi:10.1111/resp.12318
PMCID: PMC4190647  PMID: 24850215
airway hyperresponsiveness; airway smooth muscle; asthma; calcium; oscillations

Results 1-7 (7)