PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A cross-sectional analysis of light at night, neighborhood sociodemographics and urinary 6-sulfatoxymelatonin concentrations: implications for the conduct of health studies 
Background
There is accumulating evidence that circadian disruption, mediated by alterations in melatonin levels, may play an etiologic role in a wide variety of diseases. The degree to which light-at-night (LAN) and other factors can alter melatonin levels is not well-documented. Our primary objective was to evaluate the degree to which estimates of outdoor environmental LAN predict 6-sulftoxymelatonin (aMT6s), the primary urinary metabolite of melatonin. We also evaluated other potential behavioral, sociodemographic, and anthropomorphic predictors of aMT6s.
Methods
Study participants consisted of 303 members of the California Teachers Study who provided a 24-hour urine specimen and completed a self-administered questionnaire in 2000. Urinary aMT6s was measured using the Bühlmann ELISA. Outdoor LAN levels were estimated from satellite imagery data obtained from the U.S. Defense Meteorological Satellite Program’s (DMSP) Operational Linescan System and assigned to study participants’ geocoded residential address. Information on other potential predictors of aMT6s was derived from self-administered surveys. Neighborhood socioeconomic status (SES) was based on U.S. Census block group data.
Results
Lower aMT6s levels were significantly associated with older age, shorter nights, and residential locations in lower SES neighborhoods. Outdoor sources of LAN estimated using low-dynamic range DMSP data had insufficient variability across urban neighborhoods to evaluate. While high-dynamic range DMSP offered much better variability, it was not significantly associated with urinary aMT6s.
Conclusions
Future health studies should utilize the high-dynamic range DMSP data and should consider other potential sources of circadian disruption associated with living in lower SES neighborhoods.
doi:10.1186/1476-072X-12-39
PMCID: PMC3766028  PMID: 24127816
Circadian disruption; Light at night; Melatonin; aMT6s; Socioeconomic status; Women
2.  Determinants and Within-Person Variability of Urinary Cadmium Concentrations among Women in Northern California 
Environmental Health Perspectives  2013;121(6):643-649.
Background: Cadmium (Cd) is a toxic metal associated with increased morbidity and mortality. Urinary Cd (U-Cd) concentration is considered a biomarker of long-term exposure.
Objectives: Our objectives were to evaluate the within-person correlation among repeat samples and to identify predictors of U-Cd concentrations.
Methods: U-Cd concentrations (micrograms per liter) were measured in 24-hr urine samples collected from 296 women enrolled in the California Teachers Study in 2000 and a second 24-hr sample collected 3–9 months later from 141 of the participants. Lifestyle and sociodemographic characteristics were obtained via questionnaires. The Total Diet Study database was used to quantify dietary cadmium intake based on a food frequency questionnaire. We estimated environmental cadmium emissions near participants’ residences using a geographic information system.
Results: The geometric mean U-Cd concentration was 0.27 µg/L and the range was 0.1–3.6 µg/L. The intraclass correlation among repeat samples from an individual was 0.50. The use of a single 24-hr urine specimen to characterize Cd exposure in a case–control study would result in an observed odds ratio of 1.4 for a true odds ratio of 2.0. U-Cd concentration increased with creatinine, age, and lifetime pack-years of smoking among ever smokers or lifetime intensity-years of passive smoking among nonsmokers, whereas it decreased with greater alcohol consumption and number of previous pregnancies. These factors explained 42–44% of the variability in U-Cd concentrations.
Conclusion: U-Cd levels varied with several individual characteristics, and a single measurement of U-Cd in a 24-hr sample did not accurately reflect medium- to long-term body burden.
doi:10.1289/ehp.1205524
PMCID: PMC3672909  PMID: 23552363
cadmium; biomarkers; diet; exposure science; GIS
3.  Long-Term Exposure to Air Pollution and Cardiorespiratory Disease in the California Teachers Study Cohort 
Rationale: Several studies have linked long-term exposure to particulate air pollution with increased cardiopulmonary mortality; only two have also examined incident circulatory disease.
Objectives: To examine associations of individualized long-term exposures to particulate and gaseous air pollution with incident myocardial infarction and stroke, as well as all-cause and cause-specific mortality.
Methods: We estimated long-term residential air pollution exposure for more than 100,000 participants in the California Teachers Study, a prospective cohort of female public school professionals. We linked geocoded residential addresses with inverse distance-weighted monthly pollutant surfaces for two measures of particulate matter and for several gaseous pollutants. We examined associations between exposure to these pollutants and risks of incident myocardial infarction and stroke, and of all-cause and cause-specific mortality, using Cox proportional hazards models.
Measurements and Main Results: We found elevated hazard ratios linking long-term exposure to particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5), scaled to an increment of 10 μg/m3 with mortality from ischemic heart disease (IHD) (1.20; 95% confidence interval [CI], 1.02–1.41) and, particularly among postmenopausal women, incident stroke (1.19; 95% CI, 1.02–1.38). Long-term exposure to particulate matter less than 10 μm in aerodynamic diameter (PM10) was associated with elevated risks for IHD mortality (1.06; 95% CI, 0.99–1.14) and incident stroke (1.06; 95% CI, 1.00–1.13), while exposure to nitrogen oxides was associated with elevated risks for IHD and all cardiovascular mortality.
Conclusions: This study provides evidence linking long-term exposure to PM2.5 and PM10 with increased risks of incident stroke as well as IHD mortality; exposure to nitrogen oxides was also related to death from cardiovascular diseases.
doi:10.1164/rccm.201012-2082OC
PMCID: PMC3208653  PMID: 21700913
particulate matter; cardiovascular diseases; air pollutants; epidemiology
4.  Determinants of Agricultural Pesticide Concentrations in Carpet Dust 
Environmental Health Perspectives  2011;119(7):970-976.
Background: Residential proximity to agricultural pesticide applications has been used as a surrogate for exposure in epidemiologic studies, although little is known about the relationship with levels of pesticides in homes.
Objective: We identified determinants of concentrations of agricultural pesticides in dust.
Methods: We collected samples of carpet dust and mapped crops within 1,250 m of 89 residences in California. We measured concentrations of seven pesticides used extensively in agriculture (carbaryl, chlorpyrifos, chlorthal-dimethyl, diazinon, iprodione, phosmet, and simazine). We estimated use of agricultural pesticides near residences from a statewide database alone and by linking the database with crop maps. We calculated the density of pesticide use within 500 and 1,250 m of residences for 180, 365, and 730 days before collection of dust and evaluated relationships between agricultural pesticide use estimates and pesticide concentrations in carpet dust.
Results: For five of the seven pesticides evaluated, residences with use of agricultural pesticides within 1,250 m during the previous 365 days had significantly higher concentrations of pesticides than did residences with no nearby use. The highest correlation with concentrations of pesticides was generally for use reported within 1,250 m of the residence and 730 days before sample collection. Regression models that also accounted for occupational and home use of pesticides explained only a modest amount of the variability in pesticide concentrations (4–28%).
Conclusions: Agricultural pesticide use near residences was a significant determinant of concentrations of pesticides in carpet dust for five of seven pesticides evaluated.
doi:10.1289/ehp.1002532
PMCID: PMC3222988  PMID: 21330232
agriculture; dust; exposure; GIS; pesticides
6.  Factors Associated with Residential Mobility in Children with Leukemia: Implications for Assigning Exposures 
Annals of epidemiology  2009;19(11):834-840.
Purpose
In epidemiologic studies, neighborhood characteristics are often assigned to individuals based on a single residence despite the fact that people frequently move and, for most cancer outcomes, the relevant time-window of exposure is not known. The authors evaluated residential mobility patterns for a population-based series of childhood leukemia cases enrolled in the Northern California Childhood Leukemia Study.
Methods
Complete residential history from one year prior to birth to date of diagnosis was obtained for 380 cases diagnosed between 1995 and 2002. All residences were assigned U.S. Census block group designations using a geographic information system.
Results
Overall, two-thirds (65.8%) of children had moved between birth and diagnosis, and a third (34.5%) moved during the first year of life. Approximately 25% of the mothers had moved during the year before the child's birth. Multivariable analysis indicated greater residential mobility to be associated with older age of the child at diagnosis, younger age of the mother at child's birth, and lower household income. Among those who had moved, residential urban/rural status for birth and diagnosis residences changed for about 20% of subjects, and neighborhood SES for 35%.
Conclusions
These results suggest that neighborhood attribute estimates in health studies should account for patterns of residential mobility. Estimates based on a single residential location at a single point in time may lead to different inferences.
doi:10.1016/j.annepidem.2009.03.001
PMCID: PMC2761989  PMID: 19364662
Childhood leukemia; Epidemiology; Exposure classification; Residential mobility; Socioeconomic status
7.  Residential Proximity to Agricultural Pesticide Applications and Childhood Acute Lymphoblastic Leukemia 
Environmental research  2009;109(7):891-899.
Ambient exposure from residential proximity to applications of agricultural pesticides may contribute to the risk of childhood acute lymphoblastic leukemia (ALL). Using residential histories collected from the families of 213 ALL cases and 268 matched controls enrolled in the Northern California Childhood Leukemia Study, the authors assessed residential proximity within a half-mile (804.5 meters) of pesticide applications by linking address histories with reports of agricultural pesticide use. Proximity was ascertained during different time windows of exposure, including the first year of life and the child’s lifetime through the date of diagnosis for cases or reference for controls. Agricultural pesticides were categorized a priori into groups based on similarities in toxicological effects, physicochemical properties, and target pests or uses. The effects of moderate and high exposure for each group of pesticides were estimated using conditional logistic regression. Elevated ALL risk was associated with lifetime moderate exposure, but not high exposure, to certain physicochemical categories of pesticides, including organophosphates, cholorinated phenols, and triazines, and with pesticides classified as insecticides or fumigants. A similar pattern was also observed for several toxicological groups of pesticides. These findings suggest future directions for the identification of specific pesticides that may play a role in the etiology of childhood leukemia.
doi:10.1016/j.envres.2009.07.014
PMCID: PMC2748130  PMID: 19700145
Agricultural pesticides; cancer; childhood leukemia; environmental exposure; geographic information systems
8.  Long-Term Exposure to Constituents of Fine Particulate Air Pollution and Mortality: Results from the California Teachers Study 
Environmental Health Perspectives  2009;118(3):363-369.
Background
Several studies have reported associations between long-term exposure to ambient fine particulate matter (PM) and cardiovascular mortality. However, the health impacts of long-term exposure to specific constituents of PM2.5 (PM with aerodynamic diameter ≤ 2.5 μm) have not been explored.
Methods
We used data from the California Teachers Study, a prospective cohort of active and former female public school professionals. We developed estimates of long-term exposures to PM2.5 and several of its constituents, including elemental carbon, organic carbon (OC), sulfates, nitrates, iron, potassium, silicon, and zinc. Monthly averages of exposure were created using pollution data from June 2002 through July 2007. We included participants whose residential addresses were within 8 and 30 km of a monitor collecting PM2.5 constituent data. Hazard ratios (HRs) were estimated for long-term exposure for mortality from all nontraumatic causes, cardiopulmonary disease, ischemic heart disease (IHD), and pulmonary disease.
Results
Approximately 45,000 women with 2,600 deaths lived within 30 km of a monitor. We observed associations of all-cause, cardiopulmonary, and IHD mortality with PM2.5 mass and each of its measured constituents, and between pulmonary mortality and several constituents. For example, for cardiopulmonary mortality, HRs for interquartile ranges of PM2.5, OC, and sulfates were 1.55 [95% confidence interval (CI), 1.43–1.69], 1.80 (95% CI, 1.68–1.93), and 1.79 (95% CI, 1.58–2.03), respectively. Subsequent analyses indicated that, of the constituents analyzed, OC and sulfates had the strongest associations with all four outcomes.
Conclusions
Long-term exposures to PM2.5 and several of its constituents were associated with increased risks of all-cause and cardiopulmonary mortality in this cohort. Constituents derived from combustion of fossil fuel (including diesel), as well as those of crustal origin, were associated with some of the greatest risks. These results provide additional evidence that reduction of ambient PM2.5 may provide significant public health benefits.
doi:10.1289/ehp.0901181
PMCID: PMC2854764  PMID: 20064787
cardiopulmonary mortality; chronic exposure; cohort study; elemental carbon; fine particles; organic carbon; PM2.5; species; sulfates
9.  Residential Traffic Density and Childhood Leukemia Risk 
Background
Exposures to carcinogenic compounds from vehicle exhaust may increase childhood leukemia risk, and the timing of this exposure may be important.
Methods
We examined the association between traffic density and childhood leukemia risk for three time periods: birth, time of diagnosis, and lifetime average, based on complete residential history in a case-control study. Cases were rapidly ascertained from participating hospitals in northern and central California between 1995 and 2002. Controls were selected from birth records, individually matched on age, sex, race, and Hispanic ethnicity. Traffic density was calculated by estimating total vehicle miles traveled per square mile within a 500-foot (152 meter) radius area around each address. We used conditional logistic regression analyses to account for matching factors and to adjust for household income.
Results
We included 310 cases of acute lymphocytic leukemias (ALL) and 396 controls in our analysis. The odds ratio for ALL and residential traffic density above the 75th percentile, compared with subjects with zero traffic density, was 1.17 [95% confidence interval (95% CI), 0.76–1.81) for residence at diagnosis and 1.11 (95% CI, 0.70–1.78) for the residence at birth. For average lifetime traffic density, the odds ratio was 1.24 (95% CI, 0.74–2.08) for the highest exposure category.
Conclusions
Living in areas of high traffic density during any of the exposure time periods was not associated with increased risk of childhood ALL in this study.
doi:10.1158/1055-9965.EPI-08-0338
PMCID: PMC2706505  PMID: 18768496
10.  Residential Proximity to Agricultural Pesticide Use and Incidence of Breast Cancer in California, 1988–1997 
Environmental Health Perspectives  2005;113(8):993-1000.
California is the largest agricultural state in the United States and home to some of the world’s highest breast cancer rates. The objective of our study was to evaluate whether California breast cancer rates were elevated in areas with recent high agricultural pesticide use. We identified population-based invasive breast cancer cases from the California Cancer Registry for 1988–1997. We used California’s pesticide use reporting data to select pesticides for analysis based on use volume, carcinogenic potential, and exposure potential. Using 1990 and 2000 U.S. Census data, we derived age- and race-specific population counts for the time period of interest. We used a geographic information system to aggregate cases, population counts, and pesticide use data for all block groups in the state. To evaluate whether breast cancer rates were related to recent agricultural pesticide use, we computed rate ratios and 95% confidence intervals using Poisson regression models, adjusting for age, race/ethnicity, and neighborhood socioeconomic status and urbanization. This ecologic (aggregative) analysis included 176,302 invasive breast cancer cases and 70,968,598 person-years of observation. The rate ratios did not significantly differ from 1 for any of the selected pesticide categories or individual agents. The results from this study provide no evidence that California women living in areas of recent, high agricultural pesticide use experience higher rates of breast cancer.
doi:10.1289/ehp.7765
PMCID: PMC1280339  PMID: 16079069
breast neoplasms; geographic information system; incidence; pesticides
11.  Childhood cancer incidence rates and hazardous air pollutants in California: an exploratory analysis. 
Environmental Health Perspectives  2003;111(4):663-668.
Hazardous air pollutants (HAPs) are compounds shown to cause cancer or other adverse health effects. We analyzed population-based childhood cancer incidence rates in California (USA) from 1988 to 1994, by HAP exposure scores, for all California census tracts. For each census tract, we calculated exposure scores by combining cancer potency factors with outdoor HAP concentrations modeled by the U.S. Environmental Protection Agency. We evaluated the relationship between childhood cancer rates and exposure scores for 25 potentially carcinogenic HAPs emitted from mobile, area, and point sources and from all sources combined. Our study period saw 7,143 newly diagnosed cancer cases in California; of these, 6,989 (97.8%) could be assigned to census tracts and included in our analysis. Using Poisson regression, we estimated rate ratios (RRs) adjusted for age, race/ethnicity, and sex. We found little evidence for elevated cancer RRs for all sites or for gliomas among children living in high-ranking combined-source exposure areas. We found elevated RRs and a significant trend with increasing exposure level for childhood leukemia in tracts ranked highest for exposure to the combined group of 25 HAPs (RR = 1.21; 95% confidence interval, 1.03, 1.42) and in tracts ranked highest for point-source HAP exposure (RR = 1.32; 95% confidence interval, 1.11, 1.57). Our findings suggest an association between increased childhood leukemia rates and high HAP exposure, but studies involving more comprehensive exposure assessment and individual-level exposure data will be important for elucidating this relationship.
PMCID: PMC1241461  PMID: 12676632
12.  Childhood cancer and agricultural pesticide use: an ecologic study in California. 
Environmental Health Perspectives  2002;110(3):319-324.
We analyzed population-based childhood cancer incidence rates throughout California in relation to agricultural pesticide use. During 1988-1994, a total of 7,143 cases of invasive cancer were diagnosed among children under 15 years of age in California. Building on the availability of high-quality population-based cancer incidence information from the California Cancer Registry, population data from the U.S. Census, and uniquely comprehensive agricultural pesticide use information from California's Department of Pesticide Regulation, we used a geographic information system to assign summary population, exposure, and outcome attributes at the block group level. We used Poisson regression to estimate rate ratios (RRs) by pesticide use density adjusted for race/ethnicity, age, and sex for all types of childhood cancer combined and separately for the leukemias and central nervous system cancers. We generally found no association between pesticide use density and childhood cancer incidence rates. The RR for all cancers was 0.95 [95% confidence interval (CI), 0.80-1.13] for block groups in the 90th percentile and above for use of pesticides classified as probable carcinogens, compared to the block groups with use of < 1 lb/mi(2). The RRs were similar for leukemia and central nervous system cancers. Childhood leukemia rates were significantly elevated (RR = 1.48; 95% CI, 1.03-2.13) in block groups with the highest use of propargite, although we saw no dose-response trend with increasing exposure categories. Results were unchanged by further adjustment for socioeconomic status and urbanization.
PMCID: PMC1240773  PMID: 11882484

Results 1-12 (12)