Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited 
The Journal of Clinical Investigation  2015;125(3):1269-1285.
Cholangiocarcinoma (CC) is typically diagnosed at an advanced stage and is refractory to surgical intervention and chemotherapy. Despite a global increase in the incidence of CC, little progress has been made toward the development of treatments for this cancer. Here we utilized human tissue; CC cell xenografts; a p53-deficient transgenic mouse model; and a non-transgenic, chemically induced rat model of CC that accurately reflects both the inflammatory and regenerative background associated with human CC pathology. Using these systems, we determined that the WNT pathway is highly activated in CCs and that inflammatory macrophages are required to establish this WNT-high state in vivo. Moreover, depletion of macrophages or inhibition of WNT signaling with one of two small molecule WNT inhibitors in mouse and rat CC models markedly reduced CC proliferation and increased apoptosis, resulting in tumor regression. Together, these results demonstrate that enhanced WNT signaling is a characteristic of CC and suggest that targeting WNT signaling pathways has potential as a therapeutic strategy for CC.
PMCID: PMC4362247  PMID: 25689248
2.  Differentiation of progenitors in the liver: a matter of local choice 
The Journal of Clinical Investigation  2013;123(5):1867-1873.
The liver is a complex organ that requires multiple rounds of cell fate decision for development and homeostasis throughout the lifetime. During the earliest phases of organogenesis, the liver acquires a separate lineage from the pancreas and the intestine, and subsequently, the liver bud must appropriately differentiate to form metabolic hepatocytes and cholangiocytes for proper hepatic physiology. In addition, throughout life, the liver is bombarded with chemical and pathological insults, which require the activation and correct differentiation of adult progenitor cells. This Review seeks to provide an overview of the complex signaling relationships that allow these tightly regulated processes to occur.
PMCID: PMC3635730  PMID: 23635784
3.  Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver 
Gut  2010;59(5):645-654.
Stem/progenitor cell niches in tissues regulate stem/progenitor cell differentiation and proliferation through local signalling.
To examine the composition and formation of stem progenitor cell niches.
The composition of the hepatic progenitor cell niche in independent models of liver injury and hepatic progenitor cell activation in rodents and humans was studied. To identify the origin of the progenitor and niche cells, sex-mismatched bone marrow transplants in mice, who had received the choline—ethionine-deficient-diet to induce liver injury and progenitor cell activation, were used. The matrix surrounding the progenitor cells was described by immunohistochemical staining and its functional role controlling progenitor cell behaviour was studied in cell culture experiments using different matrix layers.
The progenitor cell response in liver injury is intimately surrounded by myofibroblasts and macrophages, and to a lesser extent by endothelial cells. Hepatic progenitor cells are not of bone marrow origin; however, bone marrow-derived cells associate intimately with these cells and are macrophages. Laminin always surrounds the progenitor cells. In vitro studies showed that laminin aids maintenance of progenitor and biliary cell phenotype and promotes their gene expression (Dlk1, Aquaporin 1, γGT) while inhibiting hepatocyte differentiation and gene expression (CEPB/α).
During liver damage in rodents and humans a stereotypical cellular and laminin niche forms around hepatic progenitor cells. Laminin helps maintenance of undifferentiated progenitor cells. The niche links the intrahepatic progenitor cells with bone marrow-derived cells and links tissue damage with progenitor cell-mediated tissue repair.
PMCID: PMC3034133  PMID: 20427399
4.  Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma 
Cancer research  2013;74(4):1005-1010.
Intrahepatic cholangiocarcinoma (ICC) is a treatment refractory malignancy with a high mortality and an increasing incidence worldwide. Recent studies have observed that activation of Notch and AKT signalling within mature hepatocytes is able to induce the formation of tumours displaying biliary lineage markers, thereby raising the suggestion that it is hepatocytes, rather than cholangiocytes or hepatic progenitor cells that represent the cell of origin of this tumour. Here we utilise a cholangiocyte-lineage tracing system to target p53 loss to biliary epithelia and observe the appearance of labelled biliary lineage tumours in response to chronic injury. Consequent to this, up-regulation of native functional Notch signalling is observed to occur spontaneously within cholangiocytes and hepatocytes in this model as well as in human ICC. These data prove that in the context of chronic inflammation and p53 loss, frequent occurrences in human disease, biliary epithelia are a target of transformation and an origin of ICC.
PMCID: PMC3929349  PMID: 24310400
cholangiocarcinoma; origin; cholangiocyte; Notch; cancer
5.  Suppression of Epithelial-to-Mesenchymal Transitioning Enhances Ex Vivo Reprogramming of Human Exocrine Pancreatic Tissue Toward Functional Insulin-Producing β-Like Cells 
Diabetes  2013;62(8):2821-2833.
Because of the lack of tissue available for islet transplantation, new sources of β-cells have been sought for the treatment of type 1 diabetes. The aim of this study was to determine whether the human exocrine-enriched fraction from the islet isolation procedure could be reprogrammed to provide additional islet tissue for transplantation. The exocrine-enriched cells rapidly dedifferentiated in culture and grew as a mesenchymal monolayer. Genetic lineage tracing confirmed that these mesenchymal cells arose, in part, through a process of epithelial-to-mesenchymal transitioning (EMT). A protocol was developed whereby transduction of these mesenchymal cells with adenoviruses containing Pdx1, Ngn3, MafA, and Pax4 generated a population of cells that were enriched in glucagon-secreting α-like cells. Transdifferentiation or reprogramming toward insulin-secreting β-cells was enhanced, however, when using unpassaged cells in combination with inhibition of EMT by inclusion of Rho-associated kinase (ROCK) and transforming growth factor-β1 inhibitors. Resultant cells were able to secrete insulin in response to glucose and on transplantation were able to normalize blood glucose levels in streptozotocin diabetic NOD/SCID mice. In conclusion, reprogramming of human exocrine-enriched tissue can be best achieved using fresh material under conditions whereby EMT is inhibited, rather than allowing the culture to expand as a mesenchymal monolayer.
PMCID: PMC3717833  PMID: 23610058
6.  Markedly Increased High-Mobility Group Box 1 Protein in a Patient with Small-for-Size Syndrome 
Background. Small-for-size syndrome (SFSS) occurs in the presence of insufficient liver mass to maintain normal function after liver transplantation. Murine mortality following 85% hepatectomy can be reduced by the use of soluble receptor for advanced glycation end products (sRAGE) to scavenge damage-associated molecular patterns and prevent their engagement with membrane-bound RAGE. Aims. To explore serum levels of sRAGE, high-mobility group box-1 (HMGB1) protein, and other soluble inflammatory mediators in a fatal case of SFSS. Methods. Serum levels of HMGB1, sRAGE, IL-18, and other inflammatory mediators were measured by ELISA in a case of SFSS, and the results were compared with 8 patients with paracetamol-induced acute liver failure (ALF) and 6 healthy controls (HC). Results. HMGB1 levels were markedly higher in the SFSS patient (92.1 ng/mL) compared with the ALF patients (median (IQR) 11.4 (3.7–14.8) ng/mL) and HC (1.42 (1.38–1.56) ng/mL). In contrast, sRAGE levels were lower in the SFSS patient (1.88 ng/mL) compared with the ALF patients (3.53 (2.66–12.37) ng/mL) and were similar to HC levels (1.40 (1.23–1.89) ng/mL). Conclusion. These results suggest an imbalance between pro- and anti-inflammatory innate immune pathways in SFSS. Modulation of the HMGB1-RAGE axis may represent a future therapeutic avenue in this condition.
PMCID: PMC3926239  PMID: 24600525
7.  Proteinase Activated Receptor 1 Mediated Fibrosis in a Mouse Model of Liver Injury: A Role for Bone Marrow Derived Macrophages 
PLoS ONE  2014;9(1):e86241.
Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1) is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.
PMCID: PMC3903514  PMID: 24475094
8.  Macrophage derived Wnt signalling opposes Notch signalling in a Numb mediated manner to specify HPC fate in chronic liver disease in human and mouse 
Nature medicine  2012;18(4):572-579.
During chronic injury, regeneration of the adult liver becomes impaired. In this context bipotent Hepatic Progenitor Cells (HPCs) become activated and can regenerate both cholangiocytes and hepatocytes. Notch and Wnt signalling during hepatic ontogeny are described, but their roles in HPC mediated liver regeneration are unclear. Here we show in human diseased liver and murine models of the ductular reaction with biliary and hepatocyte regeneration that Notch and Wnt signalling direct HPC specification within the activated myofibroblasts and macrophages HPC niche. During biliary regeneration, Numb is downregulated in HPCs, Jagged1 promotes biliary specification within HPCs. During hepatocyte regeneration, macrophage derived canonical Wnt signalling maintains Numb within HPCs, and Notch signalling is reduced promoting hepatocyte specification. This dominant Wnt state is stimulated through engulfment of hepatocyte debris by niche macrophages and can directly influence the HPCs. Macrophage Wnt3a expression in turn facilitates hepatocyte regeneration – thus exemplifying a novel positive feedback mechanism in adult parenchymal regeneration.
PMCID: PMC3364717  PMID: 22388089
9.  Regulation of Transforming Growth Factor-β1–driven Lung Fibrosis by Galectin-3 
Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic dysregulated response to alveolar epithelial injury with differentiation of epithelial cells and fibroblasts into matrix-secreting myofibroblasts resulting in lung scaring. The prognosis is poor and there are no effective therapies or reliable biomarkers. Galectin-3 is a β-galactoside binding lectin that is highly expressed in fibrotic tissue of diverse etiologies.
Objectives: To examine the role of galectin-3 in pulmonary fibrosis.
Methods: We used genetic deletion and pharmacologic inhibition in well-characterized murine models of lung fibrosis. Further mechanistic studies were performed in vitro and on samples from patients with IPF.
Measurements and Main Results: Transforming growth factor (TGF)-β and bleomycin-induced lung fibrosis was dramatically reduced in mice deficient in galectin-3, manifest by reduced TGF-β1–induced EMT and myofibroblast activation and collagen production. Galectin-3 reduced phosphorylation and nuclear translocation of β-catenin but had no effect on Smad2/3 phosphorylation. A novel inhibitor of galectin-3, TD139, blocked TGF-β–induced β-catenin activation in vitro and in vivo and attenuated the late-stage progression of lung fibrosis after bleomycin. There was increased expression of galectin-3 in the bronchoalveolar lavage fluid and serum from patients with stable IPF compared with nonspecific interstitial pneumonitis and controls, which rose sharply during an acute exacerbation suggesting that galectin-3 may be a marker of active fibrosis in IPF and that strategies that block galectin-3 may be effective in treating acute fibrotic exacerbations of IPF.
Conclusions: This study identifies galectin-3 as an important regulator of lung fibrosis and provides a proof of principle for galectin-3 inhibition as a potential novel therapeutic strategy for IPF.
PMCID: PMC3410728  PMID: 22095546
fibrosis; epithelial cells; fibroblasts
10.  Matrix Stiffness Modulates Proliferation, Chemotherapeutic Response and Dormancy in Hepatocellular Carcinoma Cells 
Hepatology (Baltimore, Md.)  2011;53(4):1192-1205.
There is increasing evidence that the physical environment is a critical mediator of tumor behavior. Hepatocellular carcinoma (HCC) develops within an altered biomechanical environment and increasing matrix stiffness is a strong predictor of HCC development. The aim of this study was to establish whether changes in matrix stiffness, which are characteristic of inflammation and fibrosis, regulate HCC cell proliferation and chemotherapeutic response. Using an in vitro system of “mechanically-tunable” matrix-coated polyacrylamide gels, matrix stiffness was modeled across a pathophysiologically-relevant range, corresponding to values encountered in normal and fibrotic livers.
Increasing matrix stiffness was found to promote HCC cell proliferation. The proliferative index (assessed by Ki67 staining) of Huh7 and HepG2 cells was 2.7-fold and 12.2-fold higher, respectively, when the cells were cultured on stiff (12kPa) versus soft (1kPa) supports. This was associated with stiffness-dependent regulation of basal and HGF-stimulated mitogenic signaling through extracellular regulated kinase (ERK), protein kinase B (PKB/Akt) and signal transducer and activator of transcription 3 (STAT3). β1-integrin and focal adhesion kinase (FAK) were found to modulate stiffness-dependent HCC cell proliferation. Following treatment with cisplatin, we observed reduced apoptosis in HCC cells cultured on a stiff versus soft (physiological) supports. Interestingly, however, surviving cells from soft supports had significantly higher clonogenic capacity than surviving cells from a stiff microenvironment. This was associated with enhanced expression of cancer stem cell markers, including CD44, CD133, c-kit, CXCR4, octamer-4 (OCT4) and NANOG.
Increasing matrix stiffness promotes proliferation and chemotherapeutic resistance, whereas a soft environment induces reversible cellular dormancy and stem cell characteristics in HCC. This has implications for both the treatment of primary HCC and the prevention of tumor outgrowth from disseminated tumor cells.
PMCID: PMC3076070  PMID: 21442631
Liver fibrosis; Mechanotransduction; Cancer Stem Cells; Metastasis; Microenvironment
11.  Generation of Functional Human Hepatic Endoderm from Human iPS cells 
Hepatology (Baltimore, Md.)  2010;51(1):329-335.
With the advent of induced pluripotent stem cell (iPSC) technology, it is now feasible to generate iPSCs with a defined genotype or disease state. When coupled with direct differentiation of defined lineage, such as hepatic endoderm (HE). iPSC would revolutionise the way we study human liver biology and generate efficient “off the shelf” models of human liver disease.
Here we show the `proof of concept' that iPSC lines representing both male and female sexes and two ethnic origins can be differentiated to HE at efficiencies of between 70–90%, using a method mimicking a physiological condition. iPSC-derived HE exhibited hepatic morphology, and expressed the hepatic markers, Albumin and E-Cadherin as assessed by immuno-histochemistry. They also expressed alpha fetal protein (AFP), HNF4a, and a metabolic marker, Cyp7A1, demonstrating a definitive endodermal lineage differentiation. Furthermore, iPSC-derived hepatocytes produced and secreted the plasma proteins, fibrinogen, fibronectin, transthyretin (TTR) and AFP, an essential feature for functional HE. Additionally iPSC-derived HE supported both CYP1A2 and 3A4 metabolism, which is essential for drug and toxicology testing.
This work is first to demonstrate the efficient generation of hepatic endodermal lineage from human iPSC that exhibits key attributes of hepatocytes, and the potential application of iPSC-derived HE in studying human liver biology. In particular, iPSC from individuals representing highly polymorphic variants in metabolic genes and different ethnic groups will provide pharmaceutical development and toxicology studies a unique opportunity to revolutionise predictive drug toxicology assays and allow the creation of in vitro hepatic disease models.
PMCID: PMC2799548  PMID: 19877180
12.  Liver Development, Regeneration, and Carcinogenesis 
The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.
PMCID: PMC2821627  PMID: 20169172
13.  Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair 
Macrophages perform both injury-inducing and repair-promoting tasks in different models of inflammation, leading to a model of macrophage function in which distinct patterns of activation have been proposed. We investigated macrophage function mechanistically in a reversible model of liver injury in which the injury and recovery phases are distinct. Carbon tetrachloride--–induced liver fibrosis revealed scar-associated macrophages that persisted throughout recovery. A transgenic mouse (CD11b-DTR) was generated in which macrophages could be selectively depleted. Macrophage depletion when liver fibrosis was advanced resulted in reduced scarring and fewer myofibroblasts. Macrophage depletion during recovery, by contrast, led to a failure of matrix degradation. These data provide the first clear evidence that functionally distinct subpopulations of macrophages exist in the same tissue and that these macrophages play critical roles in both the injury and recovery phases of inflammatory scarring.
PMCID: PMC539199  PMID: 15630444

Results 1-13 (13)