PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Responsiveness to respiratory syncytial virus in neonates is mediated through thymic stromal lymphopoietin and OX40 ligand 
Background
Recent studies revealed a critical role for thymic stromal lymphopoietin (TSLP) released from epithelial cells and OX40 ligand (OX40L) expressed on dendritic cells (DCs) in TH2 priming and polarization.
Objectives
We sought to determine the importance of the TSLP-OX40L axis in neonatal respiratory syncytial virus (RSV) infection.
Methods
Mice were initially infected with RSV as neonates or adults and reinfected 5 weeks later. Anti-OX40L or anti-TSLP were administered during primary or secondary infection. Outcomes included assessment of airway function and inflammation and expression of OX40L, TSLP, and IL-12.
Results
OX40L was expressed mainly on CD11c+MHC class II (MHCII)+CD11b+ DCs but not CD103+ DCs. Treatment of neonates with OX40L antibody during primary RSV infection prevented the subsequent enhancement of airway hyperresponsiveness and the development of airway eosinophilia and mucus hyperproduction on reinfection. Administration of anti-TSLP before neonatal RSV infection reduced the accumulation of lung DCs, decreased OX40L expression on lung DCs, and attenuated the enhancement of airway responses after reinfection.
Conclusions
In mice initially infected as neonates, TSLP expression induced by RSV infection is an important upstream event that controls OX40L expression, lung DC migration, and TH2 polarization, accounting for the enhanced response on reinfection.
doi:10.1016/j.jaci.2012.08.033
PMCID: PMC3593657  PMID: 23036746
Respiratory syncytial virus; OX40 ligand; thymic stromal lymphopoietin
2.  Montelukast during Primary Infection Prevents Airway Hyperresponsiveness and Inflammation after Reinfection with Respiratory Syncytial Virus 
Rationale: Respiratory syncytial virus (RSV) bronchiolitis in infants may be followed by the development of asthma-like symptoms. Age at first infection dictates consequences upon reinfection. Reinfection of mice initially exposed as neonates to RSV enhanced development of airway hyperresponsiveness (AHR), eosinophilic inflammation, and mucus hyperproduction. RSV lower respiratory tract disease is associated with activation of the leukotriene pathway.
Objectives: To determine the effects of montelukast (MK), a cysteinyl leukotriene (cysLT) receptor antagonist, in primary and secondary RSV-infected newborn and adult mice.
Methods: BALB/c mice were infected with RSV at 1 week (neonate) or 6 to 8 weeks (adult) of age and reinfected 5 weeks later. MK was administered 1 day before the initial infection and through Day 6 after infection. Seven days after primary or secondary infection, airway function was assessed by lung resistance to increasing doses of inhaled methacholine; lung inflammation, goblet cell metaplasia, and cytokine levels in bronchoalveolar lavage fluid were monitored.
Measurements and Main Results: RSV infection induced cysLT release in bronchoalveolar lavage fluid. MK decreased RSV-induced AHR, airway inflammation, and increased IFN-γ production in primary infected adult and neonatal mice. MK, administered during initial infection of neonates but not during secondary infection, prevented subsequent enhancement of AHR, airway eosinophilia, and mucus hyperproduction upon reinfection.
Conclusions: MK attenuated the initial responses to primary RSV infection in both age groups and altered the consequences of RSV reinfection in mice initially infected as neonates. These data support an important role for cysLT in RSV-induced AHR and inflammation.
doi:10.1164/rccm.200912-1811OC
PMCID: PMC2937239  PMID: 20442434
airway; inflammation; RSV; cysteinyl leukotrienes
3.  Peanut-Induced Intestinal Allergy is Mediated Through a Mast Cell-IgE-FcεRI-IL-13 Pathway 
BACKGROUND
Although implicated in the disease, the specific contributions of FcεRI and IL-13 to the pathogenesis of peanut-induced intestinal allergy are not well defined.
OBJECTIVES
To determine the contributions of FcεRI, IL-13, and mast cells to the development of intestinal mucosal responses in a mouse model of peanut-induced intestinal allergy.
METHODS
Sensitized wild-type (WT), FcεRI-deficient (FcεRI−/−), and mast cell-deficient (KitW-sh/W-sh) mice received peanut orally every day for 1 week. Bone marrow-derived mast cells (BMMC) from WT, FcεRI−/−, IL- 4−/−, IL-13−/−, and IL- 4/IL-13−/− mice were differentiated and transferred into WT, FcεRI−/−, and KitW-sh/W-sh recipients. BMMC from WT and UBI-GFP/BL6 mice were differentiated and transferred into WT and KitW-sh/W-sh mice. Blockade of IL-13 was achieved using IL- 13Ra2-IgG fusion protein.
RESULTS
FcεRI−/− mice showed decreased intestinal inflammation (mast cell and eosinophil numbers) and goblet cell metaplasia, and reduced levels of IL-4, IL-6, IL-13, and IL-17A mRNA expression in the jejunum. Transfer of WT BMMC to FcεRI−/− recipients restored their ability to develop intestinal allergic responses compared to transfer of FcεRI−/−, IL-13−/−, or IL-4/IL-13−/−BMMC. FcεRI−/− mice exhibited lower IL-13 levels and treatment of WT mice with IL-13Rα2 prevented peanut-induced intestinal allergy and inflammation.
CONCLUSIONS
These data indicate that the development of peanut-induced intestinal allergy is mediated through a mast cell-dependent, IgE-FcεRI-IL-13 pathway. Targeting IL-13 may be a potential treatment for IgE-mediated peanut allergic responses in the intestine.
doi:10.1016/j.jaci.2010.05.017
PMCID: PMC2917491  PMID: 20624645
Peanut; intestinal allergy; mast cell; IgE; FcεRI; IL-13
4.  CD8 Regulates T Regulatory Cell Production of IL-6 and Maintains Their Suppressive Phenotype in Allergic Lung Disease 
Naturally occurring CD4+CD25+Foxp3+ T regulatory cells (nTregs) regulate lung allergic responses through production of IL-10 and TGF-β. nTregs from CD8−/− mice failed to suppress lung allergic responses and were characterized by reduced levels of Foxp3, IL-10, and TGF-β, and high levels of IL-6. Administration of anti–IL-6 or anti–IL-6R to wild-type recipients prior to transfer of CD8−/− nTregs restored suppression. nTregs from IL-6−/− mice were suppressive, but lost this capability if incubated with IL-6 prior to transfer. The importance of CD8 in regulating the production of IL-6 in nTregs was demonstrated by the loss of suppression and increases in IL-6 following transfer of nTregs from wild-type donors depleted of CD8+ cells. Transfer of nTregs from CD8−/− donors reconstituted with CD8+ T cells was suppressive, and accordingly, IL-6 levels were reduced. These data identify the critical role of CD8–T regulatory cell interactions in regulating the suppressive phenotype of nTregs through control of IL-6 production.
doi:10.4049/jimmunol.1001663
PMCID: PMC3127584  PMID: 21115736
5.  Differential Effects of Dendritic Cell Transfer on Airway Hyperresponsiveness and Inflammation 
Dendritic cells (DCs) are considered to be the most efficient antigen-presenting cells. Intratracheal administration of allergen-pulsed bone marrow–derived dendritic cells (BMDCs) before allergen challenge induces airway hyperresponsiveness (AHR) and inflammation. Ovalbumin (OVA)-pulsed BMDCs from wild-type (WT) mice were transferred into naive WT, CD4−/−, CD8−/−, or IL-13−/− mice. Two days (short protocol) or 10 days (long protocol) after BMDC transfer, mice were challenged with 1% OVA for 3 days and assayed 2 days later. Transfer of OVA-primed BMDCs into BALB/c or C57BL/6 mice elicited AHR in both protocols. Airway eosinophilia, Th2 cytokines, or goblet cell metaplasia were increased in the long but not short protocol. Lung T cells from both protocols produced Th2 cytokines in response to OVA in vitro. Carboxyfluorescein diacetate succinimidylester–labeled BMDCs were observed in bronchoalveolar lavage (BAL) fluid and lung parenchyma at early time points, and were detected in draining lymph nodes 48 hours after transfer. CD8−/− mice developed AHR comparable to WT mice in the short protocol, but decreased levels of AHR, airway eosinophilia, Th2 cytokines in BAL fluid, and goblet cell metaplasia compared with WT mice in the long protocol. CD4−/− or IL-13−/− mice did not develop AHR or airway inflammation in either protocol. These data suggest that allergen-pulsed BMDCs initiate development of AHR that is dependent initially on CD4+ T cells, and at later time periods on CD8+ T cells and IL-13. Thus, the timing of allergen challenge after transfer of allergen-pulsed BMDC affects the development of AHR and airway inflammation.
doi:10.1165/rcmb.2008-0256OC
PMCID: PMC2742748  PMID: 19151321
dendritic cells; CD8+ T cells; airway hyperresponsiveness
6.  Leukotriene B4 Release from Mast Cells in IgE-Mediated Airway Hyperresponsiveness and Inflammation 
Previous studies have shown that leukotriene B4 (LTB4), a proinflammatory lipid mediator, is linked to the development of airway hyperresponsiveness through the accumulation of IL-13–producing CD8+ T cells, which express a high affinity receptor for LTB4, BLT1 (Miyahara et al., Am J Respir Crit Care Med 2005;172:161–167; J Immunol 2005;174:4979–4984). By using leukotriene A4 hydrolase–deficient (LTA4H−/−) mice, which fail to synthesize LTB4, we determined the role of this lipid mediator in allergen-induced airway responses. Two approaches were used. In the first, LTA4H−/− mice and wild-type (LTA4H+/+) mice were systemically sensitized and challenged via the airways to ovalbumin. In the second, mice were passively sensitized with anti-ovalbumin IgE and exposed to ovalbumin via the airways. Mast cells were generated from bone marrow of LTA4H+/+ mice or LTA4H−/− mice. After active sensitization and challenge, LTA4H−/− mice showed significantly lower airway hyperresponsiveness compared with LTA4H+/+ mice, and eosinophil numbers and IL-13 levels in the bronchoalveoloar lavage of LTA4H−/− mice were also significantly lower. LTA4H−/− mice also showed decreased airway reactivity after passive sensitization and challenge. After LTA4H+/+ mast cell transfer, LTA4H−/− mice showed increased airway reactivity after passive sensitization and challenge, but not after systemic sensitization and challenge. These data confirm the important role for LTB4 in the development of altered airway responses and suggest that LTB4 secretion from mast cells is critical to eliciting increased airway reactivity after passive sensitization with allergen-specific IgE.
doi:10.1165/rcmb.2008-0095OC
PMCID: PMC2689918  PMID: 19029019
rodent; T cells; cytokines; lipid mediators; lung
7.  Vγ1+ T Cells and Tumor Necrosis Factor-Alpha in Ozone-Induced Airway Hyperresponsiveness 
γδ T cells regulate airway reactivity, but their role in ozone (O3)-induced airway hyperresponsiveness (AHR) is not known. Our objective was to determine the role of γδ T cells in O3-induced AHR. Different strains of mice, including those that were genetically manipulated or antibody-depleted to render them deficient in total γδ T cells or specific subsets of γδ T cells, were exposed to 2.0 ppm of O3 for 3 hours. Airway reactivity to inhaled methacholine, airway inflammation, and epithelial cell damage were monitored. Exposure of C57BL/6 mice to O3 resulted in a transient increase in airway reactivity, neutrophilia, and increased numbers of epithelial cells in the lavage fluid. TCR-δ−/− mice did not develop AHR, although they exhibited an increase in neutrophils and epithelial cells in the lavage fluid. Similarly, depletion of γδ T cells in wild-type mice suppressed O3-induced AHR without influencing airway inflammation or epithelial damage. Depletion of Vγ1+, but not of Vγ4+ T cells, reduced O3-induced AHR, and transfer of total γδ T cells or Vγ1+ T cells to TCR-δ−/− mice restored AHR. After transfer of Vγ1+ cells to TCR-δ−/− mice, restoration of AHR after O3 exposure was blocked by anti–TNF-α. However, AHR could be restored in TCR-δ−/−mice by transfer of γδ T cells from TNF-α–deficient mice, indicating that another cell type was the source of TNF-α. These results demonstrate that TNF-α and activation of Vγ1+ γδ T cells are required for the development of AHR after O3 exposure.
doi:10.1165/rcmb.2008-0346OC
PMCID: PMC2660562  PMID: 18927346
ozone; airway responsiveness; γδ T cells; TNF-α
8.  Estrogen Determines Sex Differences in Airway Responsiveness after Allergen Exposure 
The female hormone estrogen is an important factor in the regulation of airway function and inflammation, and sex differences in the prevalence of asthma are well described. Using an animal model, we determined how sex differences may underlie the development of altered airway function in response to allergen exposure. We compared sex differences in the development of airway hyperresponsiveness (AHR) after allergen exposure exclusively via the airways. Ovalbumin (OVA) was administered by nebulization on 10 consecutive days in BALB/c mice. After methacholine challenge, significant AHR developed in male mice but not in female mice. Ovariectomized female mice showed significant AHR after 10-day OVA inhalation. ICI182,780, an estrogen antagonist, similarly enhanced airway responsiveness even when administered 1 hour before assay. In contrast, 17β-estradiol dose-dependently suppressed AHR in male mice. In all cases, airway responsiveness was inhibited by the administration of a neurokinin 1 receptor antagonist. These results demonstrate that sex differences in 10-day OVA-induced AHR are due to endogenous estrogen, which negatively regulates airway responsiveness in female mice. Cumulatively, the results suggest that endogenous estrogen may regulate the neurokinin 1–dependent prejunctional activation of airway smooth muscle in allergen-exposed mice.
doi:10.1165/rcmb.2007-0298OC
PMCID: PMC2335333  PMID: 18063836
estrogen; sex; airway hyperresponsiveness; EFS; neuronal activation
9.  IFN-γ Production during Initial Infection Determines the Outcome of Reinfection with Respiratory Syncytial Virus 
Rationale: Severe respiratory syncytial virus (RSV) bronchiolitis has been associated with deficient IFN-γ production in humans, but the role of this cytokine in determining the outcome of reinfection is unknown.
Objectives: To define the role of IFN-γ in the development of RSV-mediated airway hyperresponsiveness (AHR) and lung histopathology in mice.
Methods: Wild-type (WT) and IFN-γ knockout mice were infected with RSV in the newborn or weaning stages and reinfected 5 weeks later. Airway responses were assessed on Day 6 after the primary or secondary infection.
Measurements and Main Results: Both WT and IFN-γ knockout mice developed similar levels of AHR and airway inflammation after primary infection. After reinfection, IFN-γ knockout mice, but not WT mice, developed AHR, airway eosinophilia, and mucus hyperproduction. Intranasal administration of IFN-γ during primary infection but not during reinfection prevented the development of these altered airway responses on reinfection in IFN-γ knockout mice. Adoptive transfer of WT T cells into IFN-γ knockout mice before primary infection restored IFN-γ production in the lungs and prevented the development of altered airway responses on reinfection. Treatment of mice with IFN-γ during primary neonatal infection prevented the enhancement of AHR and the development of airway eosinophilia and mucus hyperproduction on reinfection.
Conclusions: IFN-γ production during primary RSV infection is critical to the development of protection against AHR and lung histopathology on reinfection. Provision of IFN-γ during primary infection in infancy may be a potential therapeutic approach to alter the course of RSV-mediated long-term sequelae.
doi:10.1164/rccm.200612-1890OC
PMCID: PMC2204078  PMID: 17962634
respiratory syncytial virus; interferon-γ; asthma; airway hyperresponsiveness; mice
10.  Essential role of Notch signaling in effector memory CD8+ T cell–mediated airway hyperresponsiveness and inflammation 
The Journal of Experimental Medicine  2008;205(5):1087-1097.
Adoptive transfer of in vivo–primed CD8+ T cells or in vitro–generated effector memory CD8+ T (TEFF) cells restores airway hyperresponsiveness (AHR) and airway inflammation in CD8-deficient (CD8−/−) mice. Examining transcription levels, there was a strong induction of Notch1 in TEFF cells compared with central memory CD8+ T cells. Treatment of TEFF cells with a γ-secretase inhibitor (GSI) strongly inhibited Notch signaling in these cells, and after adoptive transfer, GSI-treated TEFF cells failed to restore AHR and airway inflammation in sensitized and challenged recipient CD8−/− mice, or to enhance these responses in recipient wild-type (WT) mice. These effects of GSI were also associated with increased expression of the Notch ligand Delta1 in TEFF cells. Treatment of sensitized and challenged WT mice with Delta1-Fc resulted in decreased AHR and airway inflammation accompanied by higher levels of interferon γ in bronchoalveolar lavage fluid. These results demonstrate a role for Notch in skewing the T cell response from a T helper (Th)2 to a Th1 phenotype as a consequence of the inhibition of Notch receptor activation and the up-regulation of the Notch ligand Delta1. These data are the first to show a functional role for Notch in the challenge phase of CD8+ T cell–mediated development of AHR and airway inflammation, and identify Delta1 as an important regulator of allergic airway inflammation.
doi:10.1084/jem.20072200
PMCID: PMC2373841  PMID: 18426985
11.  IL-2 and IL-18 Attenuation of Airway Hyperresponsiveness Requires STAT4, IFN-γ, and Natural Killer Cells 
IL-18 is known to induce IFN-γ production, which is enhanced when combined with IL-2. In the present study, we investigated whether the combination of exogenous IL-2 and IL-18 alters airway hyperresponsiveness (AHR) and airway inflammation. Sensitized mice exposed to ovalbumin (OVA) challenge developed AHR, inflammatory cells in the bronchoalveolar lavage (BAL) fluid, and increases in levels of Th2 cytokines and goblet cell numbers. The combination of IL-2 and IL-18, but neither alone, prevented these changes while increasing levels of IL-12 and IFN-γ. The combination of IL-2 and IL-18 was ineffective in IFN-γ–deficient and signal transducer and activator of transcription (STAT)4-deficient mice. Flow cytometry analysis showed significant increases in numbers of IFN-γ–positive natural killer (NK) cells in the lung after treatment with the combination therapy, and transfer of lung NK cells isolated from sensitized and challenged mice treated with the combination significantly suppressed AHR and BAL eosinophilia. These data demonstrate that the combination of IL-2 and IL-18 prevents AHR and airway inflammation, likely through IL-12–mediated induction of IFN-γ production in NK cells.
doi:10.1165/rcmb.2006-0231OC
PMCID: PMC1899318  PMID: 17038663
IL-2; IL-18; STAT4; IFN-γ; airway hyperresponsiveness
12.  Spontaneous Airway Hyperresponsiveness in Estrogen Receptor-α–deficient Mice 
Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans.
Objectives: To examine the role of estrogen receptors in modulating lung function and airway responsiveness using estrogen receptor–deficient mice.
Methods: Lung function was assessed by a combination of whole-body barometric plethysmography, invasive measurement of airway resistance, and isometric force measurements in isolated bronchial rings. M2 muscarinic receptor expression was assessed by Western blotting, and function was assessed by electrical field stimulation of tracheas in the presence/absence of gallamine. Allergic airway disease was examined after ovalbumin sensitization and exposure.
Measurements and Main Results: Estrogen receptor-α knockout mice exhibit a variety of lung function abnormalities and have enhanced airway responsiveness to inhaled methacholine and serotonin under basal conditions. This is associated with reduced M2 muscarinic receptor expression and function in the lungs. Absence of estrogen receptor-α also leads to increased airway responsiveness without increased inflammation after allergen sensitization and challenge.
Conclusions: These data suggest that estrogen receptor-α is a critical regulator of airway hyperresponsiveness in mice.
doi:10.1164/rccm.200509-1493OC
PMCID: PMC1899278  PMID: 17095746
lung function; asthma; hyperreactivity; M2 muscarinic receptor; estrogen receptor
13.  Spontaneous Airway Hyperresponsiveness in Estrogen Receptor-α–deficient Mice 
Rationale
Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans.
Objectives
To examine the role of estrogen receptors in modulating lung function and airway responsiveness using estrogen receptor–deficient mice.
Methods
Lung function was assessed by a combination of whole-body barometric plethysmography, invasive measurement of airway resistance, and isometric force measurements in isolated bronchial rings. M2 muscarinic receptor expression was assessed by Western blotting, and function was assessed by electrical field stimulation of tracheas in the presence/absence of gallamine. Allergic airway disease was examined after ovalbumin sensitization and exposure.
Measurements and Main Results
Estrogen receptor-α knockout mice exhibit a variety of lung function abnormalities and have enhanced airway responsiveness to inhaled methacholine and serotonin under basal conditions. This is associated with reduced M2 muscarinic receptor expression and function in the lungs. Absence of estrogen receptor-α also leads to increased airway responsiveness without increased inflammation after allergen sensitization and challenge.
Conclusions
These data suggest that estrogen receptor-α is a critical regulator of airway hyperresponsiveness in mice.
doi:10.1164/rccm.200509-1493OC
PMCID: PMC1899278  PMID: 17095746
lung function; asthma; hyperreactivity; M2 muscarinic receptor; estrogen receptor
14.  Importance of Myeloid Dendritic Cells in Persistent Airway Disease after Repeated Allergen Exposure 
Rationale: There is conflicting information about the development and resolution of airway inflammation and airway hyperresponsiveness (AHR) after repeated airway exposure to allergen in sensitized mice.
Methods: Sensitized BALB/c and C57BL/6 mice were exposed to repeated allergen challenge on 3, 7, or 11 occasions. Airway function in response to inhaled methacholine was monitored; bronchoalveolar lavage fluid inflammatory cells were counted; and goblet cell metaplasia, peribronchial fibrosis, and smooth muscle hypertrophy were quantitated on tissue sections. Bone marrow–derived dendritic cells were generated after differentiation of bone marrow cells in the presence of growth factors.
Results: Sensitization to ovalbumin (OVA) in alum, followed by three airway exposures to OVA, induced lung eosinophilia, goblet cell metaplasia, mild peribronchial fibrosis, and peribronchial smooth muscle hypertrophy; increased levels of interleukin (IL)-4, IL-5, IL-13, granulocyte-macrophage colony–stimulating factor, transforming growth factor-β1, eotaxin-1, RANTES (regulated on activation, normal T-cell expressed and secreted), and OVA-specific IgG1 and IgE; and resulted in AHR. After seven airway challenges, development of AHR was markedly decreased as was the production of IL-4, IL-5, and IL-13. Levels of IL-10 in both strains and the level of IL-12 in BALB/c mice increased. After 11 challenges, airway eosinophilia and peribronchial fibrosis further declined and the cytokine and chemokine profiles continued to change. At this time point, the number of myeloid dendritic cells and expression of CD80 and CD86 in lungs were decreased compared with three challenges. After 11 challenges, intratracheal instillation of bone marrow–derived dendritic cells restored AHR and airway eosinophilia.
Conclusions: These data suggest that repeated allergen exposure leads to progressive decreases in AHR and allergic inflammation, through decreases in myeloid dendritic cell numbers.
doi:10.1164/rccm.200505-783OC
PMCID: PMC2662981  PMID: 16192450
airway hyperresponsiveness; chronic asthma; cytokine; dendritic cells; eosinophil
15.  Inhibition of Spleen Tyrosine Kinase Prevents Mast Cell Activation and Airway Hyperresponsiveness 
Rationale: Spleen tyrosine kinase (Syk) is important for Fc and B-cell receptor–mediated signaling.
Objective: To determine the activity of a specific Syk inhibitor (R406) on mast cell activation in vitro and on the development of allergen-induced airway hyperresponsiveness (AHR) and inflammation in vivo.
Methods: AHR and inflammation were induced after 10 d of allergen (ovalbumin [OVA]) exposure exclusively via the airways and in the absence of adjuvant. This approach was previously established to be IgE, FcɛRI, and mast cell dependent. Alternatively, mice were passively sensitized with OVA-specific IgE, followed by limited airway challenge. In vitro, the inhibitor was added to cultures of IgE-sensitized bone marrow–derived mast cells (BMMCs) before cross-linking with allergen.
Results: The inhibitor prevented OVA-induced degranulation of passively IgE-sensitized murine BMMCs and inhibited the production of interleukin (IL)-13, tumor necrosis factor α, IL-2, and IL-6 in these sensitized BMMCs. When administered in vivo, R406 inhibited AHR, which developed in BALB/c mice exposed to aerosolized 1% OVA for 10 consecutive d (20 min/d), as well as pulmonary eosinophilia and goblet cell metaplasia. A similar inhibition of AHR was demonstrated in mice passively sensitized with OVA-specific IgE and exposed to limited airway challenge.
Conclusion: This study delineates a functional role for Syk in the development of mast cell– and IgE-mediated AHR and airway inflammation, and these results indicate that inhibition of Syk may be a target in the treatment of allergic asthma.
doi:10.1164/rccm.200503-361OC
PMCID: PMC2662982  PMID: 16192454
airway hyperresponsiveness; eosinophils; goblet cell metaplasia; mast cells; spleen tyrosine kinase
16.  Requirement for Leukotriene B4 Receptor 1 in Allergen-induced Airway Hyperresponsiveness 
Rationale: Leukotriene B4 (LTB4) is a rapidly synthesized, early leukocyte chemoattractant that signals via its cell surface receptor, leukotriene B4 receptor 1 (BLT1), to attract and activate leukocytes during inflammation. A role for the LTB4–BLT1 pathway in allergen-induced airway hyperresponsiveness and inflammation is not well defined. Objectives: To define the role of the LTB4 receptor (BLT1) in the development of airway inflammation and altered airway function. Methods: BLT1-deficient (BLT1−/−) mice and wild-type mice were sensitized to ovalbumin by intraperitoneal injection and then challenged with ovalbumin via the airways. Airway responsiveness to inhaled methacholine, bronchoalveolar lavage fluid cell composition and cytokine levels, and lung inflammation and goblet cell hyperplasia were assessed. Results: Compared with wild-type mice, BLT1−/− mice developed significantly lower airway responsiveness to inhaled methacholine, lower goblet cell hyperplasia in the airways, and decreased interleukin (IL)-13 production both in vivo, in the bronchoalveolar lavage fluid, and in vitro, after antigen stimulation of lung cells in culture. Intracellular cytokine staining of lung cells revealed that bronchoalveolar lavage IL-13 levels and numbers of IL-13+/CD4+ and IL-13+/CD8+ T cells were also reduced in BLT1−/− mice. Reconstitution of sensitized and challenged BLT1−/− mice with allergen-sensitized BLT1+/+ T cells fully restored the development of airway hyperresponsiveness. In contrast, transfer of naive T cells failed to do so. Conclusion: These data suggest that BLT1 expression on primed T cells is required for the full development of airway hyperresponsiveness, which appears to be associated with IL-13 production in these cells.
doi:10.1164/rccm.200502-205OC
PMCID: PMC2718465  PMID: 15849325
airway responsiveness; cytokines; lipid mediators; lung inflammation; T cells
17.  Airway Hyperresponsiveness in the Absence of CD4+ T Cells after Primary but Not Secondary Challenge 
CD4+ T cells have been shown to play a role in the development of airway hyperresponsivness (AHR) and airway eosinophilia in mice using ablation as well as adoptive transfer experiments. However, as other T cell subsets (CD8, NKT) may play a role in these models, we examined the responses of sensitized CD4-deficient mice after either primary or secondary airway allergen challenge. After sensitization, CD4-deficiency in mice was not associated with airway eosinophilia, allergen-specific IgE, or elevated levels of interleukin (IL)-4 or IL-13. Increases in lung CD8 T cells and IL-5 were observed and shown to be essential for AHR as demonstrated after CD8 T cell depletion or anti–IL-5 treatment. In contrast to the response of sensitized CD4-deficient mice to primary allergen challenge, they failed to develop AHR after secondary allergen challenge. Although the importance of this CD4+ T cell–independent pathway in normal mice is unclear at this time, these studies identify the diversity of the cellular pathway, which may contribute to the development of AHR after primary allergen exposure of sensitized mice.
doi:10.1165/rcmb.2004-0414OC
PMCID: PMC2715306  PMID: 15845865
airway hyperresponsiveness; CD4 T cells; inflammation; secondary challenge
18.  The G Glycoprotein of Respiratory Syncytial Virus Depresses Respiratory Rates through the CX3C Motif and Substance P 
Journal of Virology  2003;77(11):6580-6584.
Respiratory syncytial virus (RSV) infection in the neonate can alter respiratory rates, i.e., lead to episodes of apnea. We show that RSV G glycoprotein reduces respiratory rates associated with the induction of substance P (SP) and G glycoprotein-CX3CR1 interaction, an effect that is inhibited by treatment with anti-G glycoprotein, anti-SP, or anti-CX3CR1 monoclonal antibodies. These data suggest new approaches for treating some aspects of RSV disease.
doi:10.1128/JVI.77.11.6580-6584.2003
PMCID: PMC155004  PMID: 12743318

Results 1-18 (18)