Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Airway Epithelial Progenitors Are Region Specific and Show Differential Responses to Bleomycin-Induced Lung Injury 
Stem cells (Dayton, Ohio)  2012;30(9):1948-1960.
Mechanisms that regulate regional epithelial cell diversity and pathologic remodeling in airways are poorly understood. We hypothesized that regional differences in cell composition and injury-related tissue remodeling result from the type and composition of local progenitors. We used surface markers and the spatial expression pattern of an SFTPC-GFP transgene to subset epithelial progenitors by airway region. Green fluorescent protein (GFP) expression ranged from undetectable to high in a proximal-to-distal gradient. GFPhi cells were subdivided by CD24 staining into alveolar (CD24neg) and conducting airway (CD24low) populations. This allowed for the segregation of three types of progenitors displaying distinct clonal behavior in vitro. GFPneg and GFPlow progenitors both yielded lumen containing colonies but displayed transcriptomes reflective of pseudostratified and distal conducting airways, respectively. CD24lowGFPhi progenitors were present in an overlapping distribution with GFPlow progenitors in distal airways, yet expressed lower levels of Sox2 and expanded in culture to yield undifferentiated self-renewing progeny. Colony-forming ability was reduced for each progenitor cell type after in vivo bleomycin exposure, but only CD24lowGFPhi progenitors showed robust expansion during tissue remodeling. These data reveal intrinsic differences in the properties of regional progenitors and suggest that their unique responses to tissue damage drive local tissue remodeling. Disclosure of potential conflicts of interest is found at the end of this article.
PMCID: PMC4083019  PMID: 22696116
Regional; Progenitor; Epithelium; Lung; Bleomycin
2.  c-Kit Is Essential for Alveolar Maintenance and Protection from Emphysema-like Disease in Mice 
Rationale: Previously, we demonstrated a candidate region for susceptibility to airspace enlargement on mouse chromosome 5. However, the specific candidate genes within this region accounting for emphysema-like changes remain unrecognized. c-Kit is a receptor tyrosine kinase within this candidate gene region that has previously been recognized to contribute to the survival, proliferation, and differentiation of hematopoietic stem cells. Increases in the percentage of cells expressing c-Kit have previously been associated with protection against injury-induced emphysema.
Objectives: Determine whether genetic variants of c-Kit are associated with spontaneous airspace enlargement.
Methods: Perform single-nucleotide polymorphism association studies in the mouse strains at the extremes of airspace enlargement phenotype for variants in c-Kit tyrosine kinase. Characterize mice bearing functional variants of c-Kit compared with wild-type controls for the development of spontaneous airspace enlargement. Epithelial cell proliferation was measured in culture.
Measurements and Main Results: Upstream regulatory single-nucleotide polymorphisms in the divergent mouse strains were associated with the lung compliance difference observed between the extreme strains. c-Kit mutant mice (KitW-sh/W-sh), when compared with genetic controls, developed altered lung histology, increased total lung capacity, increased residual volume, and increased lung compliance that persist into adulthood. c-Kit inhibition with imatinib attenuated in vitro proliferation of cells expressing epithelial cell adhesion molecule.
Conclusions: Our findings indicate that c-Kit sustains and/or maintains normal alveolar architecture in the lungs of mice. In vitro data suggest that c-Kit can regulate epithelial cell clonal expansion. The precise mechanisms that c-Kit contributes to the development of airspace enlargement and increased lung compliance remain unclear and warrants further investigation.
PMCID: PMC3136992  PMID: 21471107
genetic; tyrosine kinase; SASH; chronic obstructive pulmonary disease; aging
3.  β-Catenin Is Not Necessary for Maintenance or Repair of the Bronchiolar Epithelium 
Signaling by Wnt/β-catenin regulates self-renewal of tissue stem cells in the gut and, when activated in the embryonic bronchiolar epithelium, leads to stem cell expansion. We have used transgenic and cell type–specific knockout strategies to determine roles for β-catenin–regulated gene expression in normal maintenance and repair of the bronchiolar epithelium. Analysis of TOPGal transgene activity detected β-catenin signaling in the steady-state and repairing bronchiolar epithelium. However, the broad distribution and phenotype of signaling cells precluded establishment of a clear role for β-catenin in the normal or repairing state. Necessity of β-catenin signaling was tested through Cre-mediated deletion of Catnb exons 2–6 in airway epithelial cells. Functional knockout of β-catenin had no impact on expression of Clara cell differentiation markers, mitotic index, or sensitivity of these cells to the Clara cell–specific toxicant, naphthalene. Repair of the naphthalene-injured airway proceeded with establishment of focal regions of β-catenin–null epithelium. The size of regenerative epithelial units, mitotic index, and restoration of the ciliated cell population did not vary between wild-type and genetically modified mice. Thus, β-catenin was not necessary for maintenance or efficient repair of the bronchiolar epithelium.
PMCID: PMC2778160  PMID: 19213872
injury; repair; β-catenin; progenitor
4.  Molecular Staging of Epithelial Maturation Using Secretory Cell–Specific Genes as Markers 
Bronchiolar Clara cells undergo phenotypic changes during development and in disease. These changes are poorly described due to a paucity of molecular markers. We used chemical and transgenic approaches to ablate Clara cells, allowing identification of their unique gene expression profile. Flavin monooxygenase 3 (Fmo3), paraoxonase 1 (Pon1), aldehyde oxidase 3 (Aox3), and claudin 10 (Cldn10) were identified as novel Clara cell markers. New and existing Clara cell marker genes were categorized into three classes based on their unique developmental expression pattern. Cldn10 was uniformly expressed in the epithelium at Embryonic Day (E)14.5 and became restricted to secretory cells at E18.5. This transition was defined by induction of CCSP. Maturation of secretory cells was associated with progressive increases in the expression of Fmo3, Pon1, Aox3, and Cyp2f2 between late embryonic and postnatal periods. Messenger RNA abundance of all categories of genes was dramatically decreased after naphthalene-induced airway injury, and displayed a sequence of temporal induction during repair that suggested sequential secretory cell maturation. We have defined a broader repertoire of Clara cell–specific genes that allows staging of epithelial maturation during development and repair.
PMCID: PMC2645532  PMID: 18757308
Clara; Claudin-10; bronchiole; differentiation; lung development
5.  Conditional Stabilization of β-Catenin Expands the Pool of Lung Stem Cells 
Stem cells (Dayton, Ohio)  2008;26(5):1337-1346.
Maintenance of classic stem cell hierarchies is dependent upon stem cell self-renewal mediated in part by Wnt/β-catenin regulation of the cell cycle. This function is critical in rapidly renewing tissues due to the obligate role played by the tissue stem cell. However, the stem cell hierarchy responsible for maintenance of the conducting airway epithelium is distinct from classic stem cell hierarchies. The epithelium of conducting airways is maintained by transit-amplifying cells in the steady state; rare bronchiolar stem cells are activated to participate in epithelial repair only following depletion of transit-amplifying cells. Here, we investigate how signaling through β-catenin affects establishment and maintenance of the stem cell hierarchy within the slowly renewing epithelium of the lung. Conditional potentiation of β-catenin signaling in the embryonic lung results in amplification of airway stem cells through attenuated differentiation rather than augmented proliferation. Our data demonstrate that the differentiation-modulating activities of stabilized β-catenin account for expansion of tissue stem cells.
PMCID: PMC2773682  PMID: 18356571
Adult stem cells; Progenitor cells; Regeneration; Bronchiole; Transgenic mouse

Results 1-5 (5)