PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
2.  A Phase IIa Trial of the New Tuberculosis Vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis–infected Adults 
Rationale: Novel tuberculosis (TB) vaccines should be safe and effective in populations infected with Mycobacterium tuberculosis (M.tb) and/or HIV for effective TB control.
Objective: To determine the safety and immunogenicity of MVA85A, a novel TB vaccine, among M.tb- and/or HIV-infected persons in a setting where TB and HIV are endemic.
Methods: An open-label, phase IIa trial was conducted in 48 adults with M.tb and/or HIV infection. Safety and immunogenicity were analyzed up to 52 weeks after intradermal vaccination with 5 × 107 plaque-forming units of MVA85A. Specific T-cell responses were characterized by IFN-γ enzyme-linked immunospot and whole blood intracellular cytokine staining assays.
Measurements and Main Results: MVA85A was well tolerated and no vaccine-related serious adverse events were recorded. MVA85A induced robust and durable response of mostly polyfunctional CD4+ T cells, coexpressing IFN-γ, tumor necrosis factor-α, and IL-2. Magnitudes of pre- and postvaccination T-cell responses were lower in HIV-infected, compared with HIV-uninfected, vaccinees. No significant effect of antiretroviral therapy on immunogenicity of MVA85A was observed.
Conclusions: MVA85A was safe and immunogenic in persons with HIV and/or M.tb infection. These results support further evaluation of safety and efficacy of this vaccine for prevention of TB in these target populations.
doi:10.1164/rccm.201108-1548OC
PMCID: PMC3326425  PMID: 22281831
tuberculosis; HIV-1; vaccine; MVA85A; clinical trial
3.  A Role for Fetal Hemoglobin and Maternal Immune IgG in Infant Resistance to Plasmodium falciparum Malaria 
PLoS ONE  2011;6(4):e14798.
Background
In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin (HbF) and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease. This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs). A specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified.
Methods and Findings
We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB) RBCs, which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular endothelial cells (MVECs), monocytes, and nonparasitized RBCs – cytoadherence interactions that have been implicated in the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite's cytoadherence antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1) on CB RBCs accounts for these findings and is reminiscent of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the adherence of parasitized CB RBCs to MVECs.
Conclusions
Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant's contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into early childhood.
doi:10.1371/journal.pone.0014798
PMCID: PMC3075246  PMID: 21532754
4.  MVA85A, a novel TB vaccine, is safe in adolescents and children, and induces complex subsets of polyfunctional CD4+ T cells 
European journal of immunology  2010;40(1):279-290.
Summary
MVA85A is a new tuberculosis vaccine aimed at enhancing immunity induced by BCG. We investigated the safety and immunogenicity of MVA85A in healthy adolescents and children from a tuberculosis endemic region, who received BCG at birth.
Twelve adolescents and 24 children were vaccinated and followed up for 12 or 6 months, respectively. Adverse events were documented and vaccine-induced immune responses assessed by IFN-γ ELISpot and intracellular cytokine staining.
The vaccine was well tolerated and there were no vaccine-related serious adverse events. MVA85A induced potent and durable T cell responses. Multiple CD4+ T cell subsets, based on expression of IFN-γ, TNF-α, IL-2, IL-17 and GM-CSF, were induced. Polyfunctional CD4+ T cells co-expressing IFN-γ, TNF-α and IL-2 dominated the response in both age groups. A novel CD4+ cell subset co-expressing these three Th1 cytokines and IL-17 was induced in adolescents, while a novel CD4+ T cell subset co-expressing Th1 cytokines and GM-CSF was induced in children. Antigen-specific CD8+ T cells were not detected.
We conclude that in adolescents and children MVA85A safely induces the type of immunity thought to be important in protection against tuberculosis. This includes induction of novel Th1 cell populations which have not been previously described in humans.
doi:10.1002/eji.200939754
PMCID: PMC3044835  PMID: 20017188
MVA85A; tuberculosis; vaccine; polyfunctional; IL-17

Results 1-4 (4)