PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (43)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report 
The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.
doi:10.1164/rccm.201306-1141WS
PMCID: PMC3983890  PMID: 24160862
idiopathic pulmonary fibrosis; alveolar epithelial cells; extracellular matrix; interstitial lung disease; inflammation
2.  Up-Regulation of Heparan Sulfate 6-O-Sulfation in Idiopathic Pulmonary Fibrosis 
Heparan sulfate proteoglycans (HSPGs) are integral components of the lung. Changes in HSPGs have been documented in idiopathic pulmonary fibrosis (IPF). Many of the biological functions of HSPGs are mediated by heparan sulfate (HS) side chains, and little is understood about these side chains in the pathogenesis of IPF. The aims of this study were to compare HS structure between normal and IPF lungs and to examine how changes in HS regulate the fibrotic process. HS disaccharide analysis revealed that HS 6-O-sulfation was significantly increased in IPF lungs compared with normal lungs, concomitant with overexpression of HS 6-O-sulfotransferases 1 and 2 (HS6ST1/2) mRNA. Immunohistochemistry revealed that HS6ST2 was specifically expressed in bronchial epithelial cells, including those lining the honeycomb cysts in IPF lungs, whereas HS6ST1 had a broad expression pattern. Lung fibroblasts in the fibroblastic foci of IPF lungs expressed HS6ST1, and overexpression of HS6ST1 mRNA was observed in primary lung fibroblasts isolated from IPF lungs compared with those from normal lungs. In vitro, small interference RNA–mediated silencing of HS6ST1 in primary normal lung fibroblasts resulted in reduced Smad2 expression and activation and in reduced expression of collagen I and α-smooth muscle actin after TGF-β1 stimulation. Similar results were obtained in primary IPF lung fibroblasts. Furthermore, silencing of HS6ST1 in normal and IPF lung fibroblasts resulted in significant down-regulation of TβRIII (betaglycan). In summary, HS 6-O-sulfation is up-regulated in IPF with overexpression of HS6ST1 and HS6ST2, and overexpression of HS6ST1 in lung fibroblasts may regulate their fibrotic responses to TGF-β1.
doi:10.1165/rcmb.2013-0204OC
PMCID: PMC3930936  PMID: 23962103
idiopathic pulmonary fibrosis; heparan sulfate; fibroblast; HS6ST; TGF-β1
3.  Lung Fibroblasts from Patients with Idiopathic Pulmonary Fibrosis Exhibit Genome-Wide Differences in DNA Methylation Compared to Fibroblasts from Nonfibrotic Lung 
PLoS ONE  2014;9(9):e107055.
Excessive fibroproliferation is a central hallmark of idiopathic pulmonary fibrosis (IPF), a chronic, progressive disorder that results in impaired gas exchange and respiratory failure. Fibroblasts are the key effector cells in IPF, and aberrant expression of multiple genes contributes to their excessive fibroproliferative phenotype. DNA methylation changes are critical to the development of many diseases, but the DNA methylome of IPF fibroblasts has never been characterized. Here, we utilized the HumanMethylation 27 array, which assays the DNA methylation level of 27,568 CpG sites across the genome, to compare the DNA methylation patterns of IPF fibroblasts (n = 6) with those of nonfibrotic patient controls (n = 3) and commercially available normal lung fibroblast cell lines (n = 3). We found that multiple CpG sites across the genome are differentially methylated (as defined by P value less than 0.05 and fold change greater than 2) in IPF fibroblasts compared to fibroblasts from nonfibrotic controls. These methylation differences occurred both in genes recognized to be important in fibroproliferation and extracellular matrix generation, as well as in genes not previously recognized to participate in those processes (including organ morphogenesis and potassium ion channels). We used bisulfite sequencing to independently verify DNA methylation differences in 3 genes (CDKN2B, CARD10, and MGMT); these methylation changes corresponded with differences in gene expression at the mRNA and protein level. These differences in DNA methylation were stable throughout multiple cell passages. DNA methylation differences may thus help to explain a proportion of the differences in gene expression previously observed in studies of IPF fibroblasts. Moreover, significant variability in DNA methylation was observed among individual IPF cell lines, suggesting that differences in DNA methylation may contribute to fibroblast heterogeneity among patients with IPF. These results demonstrate that IPF fibroblasts exhibit global differences in DNA methylation that may contribute to the excessive fibroproliferation associated with this disease.
doi:10.1371/journal.pone.0107055
PMCID: PMC4162578  PMID: 25215577
4.  Randomized, Double-Blind, Placebo-Controlled Trial of Soluble Tumor Necrosis Factor Receptor: Enbrel (Etanercept) for the Treatment of Idiopathic Pneumonia Syndrome after Allogeneic Stem Cell Transplantation: Blood and Marrow Transplant Clinical Trials Network Protocol 
Idiopathic pneumonia syndrome (IPS) is a diffuse, noninfectious lung injury that occurs acutely after allogeneic hematopoietic cell transplantation (HCT). IPS-related mortality has been historically high (>50%) despite treatment with systemic corticosteroids and supportive care measures. We have now examined the role of tumor necrosis factor inhibition in a randomized, double-blind, placebo-controlled trial of corticosteroids with etanercept or placebo. Thirty-four subjects (≥18 years) with IPS after HCT were randomized to receive meth-ylprednisolone (2 mg/kg/day) plus etanercept (0.4 mg/kg twice weekly ≥ 4 weeks; n = 16) or placebo (n = 18). No active infections and a pathogen-negative bronchoscopy were required at study entry. Response (alive, with complete discontinuation of supplemental oxygen support) and overall survival were examined. This study, originally planned to accrue 120 patients, was terminated prematurely due to slow accrual. In the limited number of patients examined, there were no differences in response rates at day 28 of study. Ten of 16 patients (62.5% [95% confidence interval {CI}, 35.4% to 84.8%]) receiving etanercept and 12 of 18 patients (66.7% [95% CI, 41.0% to 86.7%]) receiving placebo met the day 28 response definition (P = 1.00). The median survival was 170 days (95% CI, 11 to 362) with etanercept versus 64 days (95% CI, 26 to 209) with placebo (P = .51). Among responders, the median time to discontinuation of supplemental oxygen was 9 days (etanercept) versus 7 days (placebo). Therapy was well tolerated, with 1 toxicity-related death from infectious pneumonia in the placebo arm. The treatment of IPS with corticosteroids in adult HCT recipients was associated with high early response rates (>60%) compared with historical reports, with poor overall survival. The addition of etanercept did not lead to further increases in response, although the sample size of this truncated trial preclude a definitive conclusion.
doi:10.1016/j.bbmt.2014.02.026
PMCID: PMC4128626  PMID: 24607553
Bone marrow transplantation; IPS; TNF; Pneumonia; Pulmonary
5.  Maternal Infection with Schistosoma japonicum Induces a Profibrotic Response in Neonates 
Infection and Immunity  2014;82(1):350-355.
The global burden of schistosomiasis is significant, with fibrosis a major associated morbidity and the primary cause of mortality. We have previously shown that schistosomiasis during pregnancy upregulates proinflammatory cytokines in the cord blood. In this study, we extend these findings to include a large panel of fibrosis-associated markers. We developed a multiplex bead-based assay to measure the levels of 35 proteins associated with fibrosis. Cord blood from 109 neonates born to mothers residing in an area of Schistosoma japonicum endemicity was assessed for these molecules. Ten mediators were elevated in the cord blood from schistosome-infected pregnancies, including insulin-like growth factor 1 (IGF-1), tumor growth factor β1 (TGF-β1), connective tissue growth factor (CTGF), procollagen I carboxy-terminal propeptide (PICP), amino-telopeptide of type 1 collagen (ICTP), collagen VI, desmosine, matrix metalloproteinase 2 (MMP-2), tissue inhibitor of metalloproteinases 1 (TIMP-1), and TIMP-4. Many of these were also positively correlated with preterm birth (PICP, ICTP, MMP-2, TGF-β1, desmosine, CTGF, TIMP-1). In addition, birth weight was 168 g lower for infants with detectable levels of CTGF than for those with CTGF levels below the level of detection. Maternal schistosomiasis results in upregulation of fibrosis-associated proteins in the cord blood of the neonate, a subset of which are also associated with adverse birth outcomes. As the first report of fibrosis-associated molecules altered in the newborn of infected mothers, this study has broad implications for the health of the fetus, stretching from gestation to adulthood.
doi:10.1128/IAI.01060-13
PMCID: PMC3911825  PMID: 24166958
6.  X-Linked Inhibitor of Apoptosis Regulates Lung Fibroblast Resistance to Fas-Mediated Apoptosis 
The accumulation of apoptosis-resistant fibroblasts within fibroblastic foci is a characteristic feature of idiopathic pulmonary fibrosis (IPF), but the mechanisms underlying apoptosis resistance remain unclear. A role for the inhibitor of apoptosis (IAP) protein family member X-linked inhibitor of apoptosis (XIAP) has been suggested by prior studies showing that (1) XIAP is localized to fibroblastic foci in IPF tissue and (2) prostaglandin E2 suppresses XIAP expression while increasing fibroblast susceptibility to apoptosis. Based on these observations, we hypothesized that XIAP would be regulated by the profibrotic mediators transforming growth factor (TGF)β-1 and endothelin (ET)-1 and that increased XIAP would contribute to apoptosis resistance in IPF fibroblasts. To address these hypotheses, we examined XIAP expression in normal and IPF fibroblasts at baseline and in normal fibroblasts after treatment with TGF-β1 or ET-1. The role of XIAP in the regulation of fibroblast susceptibility to Fas-mediated apoptosis was examined using functional XIAP antagonists and siRNA silencing. In concordance with prior reports, fibroblasts from IPF lung tissue had increased resistance to apoptosis compared with normal lung fibroblasts. Compared with normal fibroblasts, IPF fibroblasts had significantly but heterogeneously increased basal XIAP expression. Additionally, TGF-β1 and ET-1 induced XIAP protein expression in normal fibroblasts. Inhibition or silencing of XIAP enhanced the sensitivity of lung fibroblasts to Fas-mediated apoptosis without causing apoptosis in the absence of Fas activation. Collectively, these findings support a mechanistic role for XIAP in the apoptosis-resistant phenotype of IPF fibroblasts.
doi:10.1165/rcmb.2012-0224OC
PMCID: PMC3727886  PMID: 23492187
myofibroblast; idiopathic pulmonary fibrosis; inhibitor of apoptosis; lung fibrosis; apoptosis
7.  The myofibroblast matrix: implications for tissue repair and fibrosis 
The Journal of pathology  2013;229(2):298-309.
Myofibroblasts, and the extracellular matrix (ECM) in which they reside, are critical components of wound healing and fibrosis. The ECM, traditionally viewed as the structural elements within which cells reside, is actually a functional tissue whose components possess not only scaffolding characteristics, but also growth factor, mitogenic, and other bioactive properties. Although it has been suggested that tissue fibrosis simply reflects an ‘exuberant’ wound-healing response, examination of the ECM and the roles of myofibroblasts during fibrogenesis instead suggest that the organism may be attempting to recapitulate developmental programmes designed to regenerate functional tissue. Evidence of this is provided by the temporospatial re-emergence of embryonic ECM proteins by fibroblasts and myofibroblasts that induce cellular programmatic responses intended to produce a functional tissue. In the setting of wound healing (or physiological fibrosis), this occurs in a highly regulated and exquisitely choreographed fashion which results in cessation of haemorrhage, restoration of barrier integrity, and re-establishment of tissue function. However, pathological tissue fibrosis, which oftentimes causes organ dysfunction and significant morbidity or mortality, likely results from dysregulation of normal wound-healing processes or abnormalities of the process itself. This review will focus on the myofibroblast ECM and its role in both physiological and pathological fibrosis, and will discuss the potential for therapeutically targeting ECM proteins for treatment of fibrotic disorders.
doi:10.1002/path.4104
PMCID: PMC4005341  PMID: 22996908
ECM; myofibroblast; fibrosis
8.  Arsenic trioxide inhibits transforming growth factor-β1-induced fibroblast to myofibroblast differentiation in vitro and bleomycin induced lung fibrosis in vivo 
Respiratory Research  2014;15(1):51.
Background
Idiopathic pulmonary fibrosis (IPF) is a progressive disease of insidious onset, and is responsible for up to 30,000 deaths per year in the U.S. Excessive production of extracellular matrix by myofibroblasts has been shown to be an important pathological feature in IPF. TGF-β1 is expressed in fibrotic lung and promotes fibroblast to myofibroblast differentiation (FMD) as well as matrix deposition.
Methods
To identify the mechanism of Arsenic trioxide’s (ATO)’s anti-fibrotic effect in vitro, normal human lung fibroblasts (NHLFs) were treated with ATO for 24 hours and were then exposed to TGF-β1 (1 ng/ml) before harvesting at multiple time points. To investigate whether ATO is able to alleviate lung fibrosis in vivo, C57BL/6 mice were administered bleomycin by oropharyngeal aspiration and ATO was injected intraperitoneally daily for 14 days. Quantitative real-time PCR, western blotting, and immunofluorescent staining were used to assess the expression of fibrotic markers such as α-smooth muscle actin (α-SMA) and α-1 type I collagen.
Results
Treatment of NHLFs with ATO at very low concentrations (10-20nM) inhibits TGF-β1-induced α-smooth muscle actin (α-SMA) and α-1 type I collagen mRNA and protein expression. ATO also diminishes the TGF-β1-mediated contractile response in NHLFs. ATO’s down-regulation of profibrotic molecules is associated with inhibition of Akt, as well as Smad2/Smad3 phosphorylation. TGF-β1-induced H2O2 and NOX-4 mRNA expression are also blocked by ATO. ATO-mediated reduction in Smad3 phosphorylation correlated with a reduction of promyelocytic leukemia (PML) nuclear bodies and PML protein expression. PML-/- mouse embryonic fibroblasts (MEFs) showed decreased fibronectin and PAI-1 expression in response to TGF-β1. Daily intraperitoneal injection of ATO (1 mg/kg) in C57BL/6 mice inhibits bleomycin induced lung α-1 type I collagen mRNA and protein expression.
Conclusions
In summary, these data indicate that low concentrations of ATO inhibit TGF-β1-induced fibroblast to myofibroblast differentiation and decreases bleomycin induced pulmonary fibrosis.
doi:10.1186/1465-9921-15-51
PMCID: PMC4113202  PMID: 24762191
Arsenic trioxide; IPF; TGF-β1; Pulmonary fibrosis; PML; Bleomycin
9.  Inflammation, wound repair, and fibrosis: reassessing the spectrum of tissue injury and resolution 
The Journal of pathology  2013;229(2):141-144.
Estimates from various disease-specific registries suggest that chronic inflammatory and fibrotic disorders affect a large proportion of the world’s population, yet therapies for these conditions are largely ineffective. Recent advances in our collective understanding of mechanisms underlying both physiological and pathological repair of tissue injury are informing new clinical approaches to deal with various human inflammatory and fibrotic diseases. This 2013 Annual Review Issue of The Journal of Pathology offers an up-to-date glimpse of ongoing research in the fields of inflammation, wound healing, and tissue fibrosis, and highlights novel pathways and mechanisms that may be exploited to provide newer, more effective treatments to patients worldwide suffering from these conditions.
doi:10.1002/path.4126
PMCID: PMC3996448  PMID: 23097196
inflammation; fibrosis; wound healing
10.  Recipient–derived EDA fibronectin promotes cardiac allograft fibrosis 
The Journal of pathology  2012;226(4):609-618.
Advances in donor matching and immunosuppressive therapies have decreased the prevalence of acute rejection of cardiac grafts; however, chronic rejection remains a significant obstacle for long-term allograft survival. While initiating elements of anti-allograft immune responses have been identified, the linkage between these factors and the ultimate development of cardiac fibrosis is not well understood. Tissue fibrosis resembles an exaggerated wound healing response, in which extracellular matrix (ECM) molecules are central. One such ECM molecule is an alternatively spliced isoform of the ubiquitous glycoprotein fibronectin (FN), termed extra domain A-containing cellular fibronectin (EDA cFN). EDA cFN is instrumental in fibrogenesis; thus, we hypothesized that it might also regulate fibrotic remodelling associated with chronic rejection. We compared the development of acute and chronic cardiac allograft rejection in EDA cFN-deficient (EDA−/−) and wild-type (WT) mice. While EDA−/− mice developed acute cardiac rejection in a manner indistinguishable from WT controls, cardiac allografts in EDA−/− mice were protected from fibrosis associated with chronic rejection. Decreased fibrosis was not associated with differences in cardiomyocyte hypertrophy or intra-graft expression of pro-fibrotic mediators. Further, we examined expression of EDA cFN and total FN by whole splenocytes under conditions promoting various T-helper lineages. Conditions supporting regulatory T-cell (Treg) development were characterized by greatest production of total FN and EDA cFN, though EDA cFN to total FN ratios were highest in Th1 cultures. These findings indicate that recipient-derived EDA cFN is dispensable for acute allograft rejection responses but that it promotes the development of fibrosis associated with chronic rejection. Further, conditions favouring the development of regulatory T cells, widely considered graft-protective, may drive production of ECM molecules which enhance deleterious remodelling responses. Thus, EDA cFN may be a therapeutic target for ameliorating fibrosis associated with chronic cardiac allograft rejection.
doi:10.1002/path.3010
PMCID: PMC3991242  PMID: 21960174
allograft; fibrosis; fibronectin; immune response; transplantation
11.  Fibrotic extracellular matrix activates a profibrotic positive feedback loop 
The Journal of Clinical Investigation  2014;124(4):1622-1635.
Pathological remodeling of the extracellular matrix (ECM) by fibroblasts leads to organ failure. Development of idiopathic pulmonary fibrosis (IPF) is characterized by a progressive fibrotic scarring in the lung that ultimately leads to asphyxiation; however, the cascade of events that promote IPF are not well defined. Here, we examined how the interplay between the ECM and fibroblasts affects both the transcriptome and translatome by culturing primary fibroblasts generated from IPF patient lung tissue or nonfibrotic lung tissue on decellularized lung ECM from either IPF or control patients. Surprisingly, the origin of the ECM had a greater impact on gene expression than did cell origin, and differences in translational control were more prominent than alterations in transcriptional regulation. Strikingly, genes that were translationally activated by IPF-derived ECM were enriched for those encoding ECM proteins detected in IPF tissue. We determined that genes encoding IPF-associated ECM proteins are targets for miR-29, which was downregulated in fibroblasts grown on IPF-derived ECM, and baseline expression of ECM targets could be restored by overexpression of miR-29. Our data support a model in which fibroblasts are activated to pathologically remodel the ECM in IPF via a positive feedback loop between fibroblasts and aberrant ECM. Interrupting this loop may be a strategy for IPF treatment.
doi:10.1172/JCI71386
PMCID: PMC3971953  PMID: 24590289
12.  Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for In Vitro Investigation 
Rationale: Extracellular matrix (ECM) is a dynamic tissue that contributes to organ integrity and function, and its regulation of cell phenotype is a major aspect of cell biology. However, standard in vitro culture approaches are of unclear physiologic relevance because they do not mimic the compositional, architectural, or distensible nature of a living organ. In the lung, fibroblasts exist in ECM-rich interstitial spaces and are key effectors of lung fibrogenesis.
Objectives: To better address how ECM influences fibroblast phenotype in a disease-specific manner, we developed a culture system using acellular human normal and fibrotic lungs.
Methods: Decellularization was achieved using treatment with detergents, salts, and DNase. The resultant matrices can be sectioned as uniform slices within which cells were cultured.
Measurements and Main Results: We report that the decellularization process effectively removes cellular and nuclear material while retaining native dimensionality and stiffness of lung tissue. We demonstrate that lung fibroblasts reseeded into acellular lung matrices can be subsequently assayed using conventional protocols; in this manner we show that fibrotic matrices clearly promote transforming growth factor-β–independent myofibroblast differentiation compared with normal matrices. Furthermore, comprehensive analysis of acellular matrix ECM details significant compositional differences between normal and fibrotic lungs, paving the way for further study of novel hypotheses.
Conclusions: This methodology is expected to allow investigation of important ECM-based hypotheses in human tissues and permits future scientific exploration in an organ- and disease-specific manner.
doi:10.1164/rccm.201204-0754OC
PMCID: PMC3530219  PMID: 22936357
extracellular matrix; lung fibrosis; fibroblast
13.  Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrix 
The Journal of Clinical Investigation  2013;123(11):4950-4962.
The use of induced pluripotent stem cells (iPSCs) has been postulated to be the most effective strategy for developing patient-specific respiratory epithelial cells, which may be valuable for lung-related cell therapy and lung tissue engineering. We generated a relatively homogeneous population of alveolar epithelial type II (AETII) and type I (AETI) cells from human iPSCs that had phenotypic properties similar to those of mature human AETII and AETI cells. We used these cells to explore whether lung tissue can be regenerated in vitro. Consistent with an AETII phenotype, we found that up to 97% of cells were positive for surfactant protein C, 95% for mucin-1, 93% for surfactant protein B, and 89% for the epithelial marker CD54. Additionally, exposing induced AETII to a Wnt/β-catenin inhibitor (IWR-1) changed the iPSC-AETII–like phenotype to a predominantly AETI-like phenotype. We found that of induced AET1 cells, more than 90% were positive for type I markers, T1α, and caveolin-1. Acellular lung matrices were prepared from whole rat or human adult lungs treated with decellularization reagents, followed by seeding these matrices with alveolar cells derived from human iPSCs. Under appropriate culture conditions, these progenitor cells adhered to and proliferated within the 3D lung tissue scaffold and displayed markers of differentiated pulmonary epithelium.
doi:10.1172/JCI68793
PMCID: PMC3809786  PMID: 24135142
14.  Bilateral primary xanthoma of the humeri with pathologic fractures: A case report 
World Journal of Radiology  2013;5(9):345-348.
Xanthomas are rare bone tumors that occur more often in the appendicular skeleton and typically appear radiographically benign, with a narrow zone of transition and a sclerotic rim. We report the case of a 57-year-old woman with hyperlipidemia presenting with bilateral shoulder pain after minor trauma. Radiographic and histopathologic investigation demonstrated intraosseous xanthoma with atypical features, including multifocality, a wide zone of transition and pathologic fractures-characteristics more commonly associated with aggressive lesions such as multiple myeloma or metastasis. The diagnosis, imaging, and histological appearance of xanthoma of bone are reviewed.
doi:10.4329/wjr.v5.i9.345
PMCID: PMC3817293  PMID: 24198913
Xanthoma; Hyperlipidemia; Pathologic fracture
15.  ACASI Gender-of-Interviewer Voice Effects on Reports to Questions about Sensitive 
Behaviors Among Young Adults 
Public Opinion Quarterly  2012;76(2):311-325.
Although previous research indicates that audio computer-assisted self-interviewing (ACASI) yields higher reports of threatening behaviors than interviewer-administered interviews, very few studies have examined the potential effect of the gender of the ACASI voice on survey reports. Because the voice in ACASI necessarily has a gender, it is important to understand whether using a voice that is perceived as male or female might further enhance the validity associated with ACASI. This study examines gender-of-voice effects for a set of questions about sensitive behaviors administered via ACASI to a sample of young adults at high risk for engaging in the behaviors. Results showed higher levels of engagement in the behaviors and more consistent reporting among males when responding to a female voice, indicating that males were potentially more accurate when reporting to the female voice. Reports by females were not influenced by the voice’s gender. Our analysis adds to research on gender-of-voice effects in surveys, with important findings on measuring sensitive behaviors among young adults.
doi:10.1093/poq/nfs021
PMCID: PMC4079084  PMID: 24991062
16.  Schistosoma japonicum Soluble Egg Antigens Attenuate Invasion in a First Trimester Human Placental Trophoblast Model 
Background
Schistosomiasis affects nearly 40 million women of reproductive age, and is known to elicit a pro-inflammatory signature in the placenta. We have previously shown that antigens from schistosome eggs can elicit pro-inflammatory cytokine production from trophoblast cells specifically; however, the influence of these antigens on other characteristics of trophoblast function, particularly as it pertains to placentation in early gestation, is unknown. We therefore sought to determine the impact of schistosome antigens on key characteristics of first trimester trophoblast cells, including migration and invasion.
Methods
First trimester HTR8/SVneo trophoblast cells were co-cultured with plasma from pregnant women with and without schistosomiasis or schistosome soluble egg antigens (SEA) and measured cytokine, cellular migration, and invasion responses.
Results
Exposure of HTR8 cells to SEA resulted in a pro-inflammatory, anti-invasive signature, characterized by increased pro-inflammatory cytokines (IL-6, IL-8, MCP-1) and TIMP-1. Additionally, these cells displayed 62% decreased migration and 2.7-fold decreased invasion in vitro after treatment with SEA. These results are supported by increased IL-6 and IL-8 in the culture media of HTR8 cells exposed to plasma from Schistosoma japonica infected pregnant women.
Conclusions
Soluble egg antigens found in circulation during schistosome infection increase pro-inflammatory cytokine production and inhibit the mobility and invasive characteristics of the first trimester HTR8/SVneo trophoblast cell line. This is the first study to assess the impact of schistosome soluble egg antigens on the behavior of an extravillous trophoblast model and suggests that schistosomiasis in the pre-pregnancy period may adversely impact placentation and the subsequent health of the mother and newborn.
Author Summary
Approximately 40 million women of childbearing age suffer from schistosome infection globally at any given time. Multiple studies in rodent models, as well as a few reports in humans, suggest that schistosome infection results in poor pregnancy outcomes. We have previously shown that antigens released from schistosome eggs result in a pronounced pro-inflammatory response in syncytialized third trimester trophoblasts. Herein, we examine the effect of schistosome egg antigens on a first trimester trophoblast cell line, an accepted model for early placental development. Not only is the pro-inflammatory response recapitulated in this model system, but we also observed a decrease in migration and invasion of trophoblast cells after exposure to these antigens. Both migration and invasion are key aspects in early placental development, and inadequate invasion has been implicated in pregnancy-related diseases such as growth restriction and preeclampsia. This study is the first to examine the impact of schistosome antigens on early placental development, and may have implications for the subsequent health of both the pregnancy and the child.
doi:10.1371/journal.pntd.0002253
PMCID: PMC3675010  PMID: 23755313
17.  Increased survivin expression contributes to apoptosis-resistance in IPF fibroblasts 
Fibroblasts perform critical functions during the normal host response to tissue injury, but the inappropriate accumulation and persistent activation of these cells results in the development of tissue fibrosis. The mechanisms accounting for the aberrant accumulation of fibroblasts during fibrotic repair are poorly understood, although evidence supports a role for fibroblast resistance to apoptosis as a contributing factor. We have shown that TGF-β1 and endothelin-1 (ET-1), soluble mediators implicated in fibrogenesis, promote fibroblast resistance to apoptosis. Moreover, we recently found that ET-1 induced apoptosis resistance in normal lung fibroblasts through the upregulation of survivin, a member of the Inhibitor of Apoptosis (IAP) protein family. In the current study, we sought to determine the role of survivin in the apoptosis resistance of primary fibroblasts isolated from the lungs of patients with Idiopathic Pulmonary Fibrosis (IPF), a fibrotic lung disease of unclear etiology for which there is no definitive therapy. First, we examined survivin expression in lung tissue from patients with IPF and found that there is robust expression in the fibroblasts residing within fibroblastic foci (the “active” lesions in IPF which correlate with mortality). Next, we show that survivin expression is increased in fibroblasts isolated from IPF lung tissue compared to cells from normal lung tissue. Consistent with a role in fibrogenesis, we demonstrate that TGF-β1 increases survivin expression in normal lung fibroblasts. Finally, we show that inhibition of survivin enhances susceptibility of a subset of IPF fibroblasts to apoptosis. Collectively, these findings suggest that increased survivin expression represents one mechanism contributing an apoptosis-resistant phenotype in IPF fibroblasts.
PMCID: PMC3553664  PMID: 23355956
Myofibroblast; Idiopathic Pulmonary Fibrosis; Inhibitor of Apoptosis; Lung Fibrosis; Fas
19.  Survivin Expression Induced by Endothelin-1 Promotes Myofibroblast Resistance to Apoptosis 
Fibrosis of the lungs and other organs is characterized by the accumulation of myofibroblasts, effectors of wound-repair that are responsible for the deposition and organization of new extracellular matrix (ECM) in response to tissue injury. During the resolution phase of normal wound repair, myofibroblast apoptosis limits the continued deposition of ECM. Mounting evidence suggests that myofibroblasts from fibrotic wounds acquire resistance to apoptosis, but the mechanisms regulating this resistance have not been fully elucidated. Endothelin-1 (ET-1), a soluble peptide strongly associated with fibrogenesis, decreases myofibroblast susceptibility to apoptosis through activation of phosphatidylinositol 3′-OH kinase (PI3K)/AKT. Focal adhesion kinase (FAK) also promotes myofibroblast resistance to apoptosis through PI3K/AKT-dependent and – independent mechanisms, although the role of FAK in ET-1 mediated resistance to apoptosis has not been explored. The goal of this study was to investigate whether FAK contributes to ET-1 mediated myofibroblast resistance to apoptosis and to examine potential mechanisms downstream of FAK and PI3K/AKT by which ET-1 regulates myofibroblast survival. Here, we show that ET-1 regulates myofibroblast survival by Rho/ROCK-dependent activation of FAK. The anti-apoptotic actions of FAK are, in turn, dependent on activation of PI3K/AKT and the subsequent increased expression of Survivin, a member of the inhibitor of apoptosis protein (IAP) family. Collectively, these studies define a novel mechanism by which ET-1 promotes myofibroblast resistance to apoptosis through upregulation of Survivin.
doi:10.1016/j.biocel.2011.10.011
PMCID: PMC3241828  PMID: 22041029
Fibrosis; Rho-kinase; Inhibitor of Apoptosis; Mesenchymal Cell; Focal Adhesion Kinase; AKT
21.  PTEN Limits Alveolar Macrophage Function against Pseudomonas aeruginosa after Bone Marrow Transplantation 
Hematopoietic stem cell transplant patients are susceptible to infection despite cellular reconstitution. In a murine model of syngeneic bone marrow transplantation (BMT), we previously reported that BMT mice have impaired host defense against Pseudomonas aeruginosa pneumonia due to overproduction of (PG)E2 in lung. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is an effector in the PGE2 signaling pathway that negatively regulates alveolar macrophage (AM) phagocytosis and bacterial killing. Therefore, examined whether overproduction of PGE2 after BMT inhibits AM host defense by up-regulating PTEN phosphatase activity. We found that PTEN activity is elevated in BMT AMs in response to increased PGE2 signaling and that pharmacological inhibition of PTEN activity in BMT AMs fully restores phagocytosis of serum-opsonized P. aeruginosa but only partially restores phagocytosis of nonopsonized P. aeruginosa. In wild-type mice transplanted with myeloid-specific conditional PTEN knockout (PTEN CKO) bone marrow, bacterial clearance is improved after challenge with P. aeruginosa pneumonia. Furthermore, PTEN CKO BMT AMs display improved TNF-α production and enhanced phagocytosis and killing of serum-opsonized P. aeruginosa despite overproduction of PGE2. However, AM phagocytosis of nonopsonized P. aeruginosa is only partially restored in the absence of PTEN after BMT. This may be related to elevated AM expression of IL-1 receptor–associated kinase (IRAK)-M, a molecule previously identified in the PGE2 signaling pathway to inhibit AM phagocytosis of nonopsonized bacteria. These data suggest that PGE2 signaling up-regulates IRAK-M independently of PTEN and that these molecules differentially inhibit opsonized and nonopsonized phagocytosis of P. aeruginosa.
doi:10.1165/rcmb.2011-0079OC
PMCID: PMC3361361  PMID: 21527775
pneumonia; lung; neutrophil; eicosanoids; bacteria
22.  Interleukin-17 Drives Pulmonary Eosinophilia following Repeated Exposure to Aspergillus fumigatus Conidia 
Infection and Immunity  2012;80(4):1424-1436.
Previous research in our laboratory has demonstrated that repeated intranasal exposure to Aspergillus fumigatus conidia in C57BL/6 mice results in a chronic pulmonary inflammatory response that reaches its maximal level after four challenges. The inflammatory response is characterized by eosinophilia, goblet cell metaplasia, and T helper TH2 cytokine production, which is accompanied by sustained interleukin-17 (IL-17) expression that persists even after the TH2 response has begun to resolve. TH17 cells could develop in mice deficient in gamma interferon (IFN-γ), IL-4, or IL-10. In the lungs of IL-17 knockout mice repeatedly challenged with A. fumigatus conidia, inflammation was attenuated (with the most significant decrease occurring in eosinophils), conidial clearance was enhanced, and the early transient peak of CD4+ CD25+ FoxP3+ cells blunted. IL-17 appeared to play only a minor role in eosinophil differentiation in the bone marrow but a central role in eosinophil extravasation from the blood into the lungs. These observations point to an expanded role for IL-17 in driving TH2-type inflammation to repeated inhalation of fungal conidia.
doi:10.1128/IAI.05529-11
PMCID: PMC3318426  PMID: 22252873
23.  Repeated Exposure to Aspergillus fumigatus Conidia Results in CD4+ T Cell-Dependent and -Independent Pulmonary Arterial Remodeling in a Mixed Th1/Th2/Th17 Microenvironment That Requires Interleukin-4 (IL-4) and IL-10 
Infection and Immunity  2012;80(1):388-397.
Pulmonary arterial remodeling is a pathological process seen in a number of clinical disease states, driven by inflammatory cells and mediators in the remodeled artery microenvironment. In murine models, Th2 cell-mediated immune responses to inhaled antigens, such as purified Aspergillus allergen, have been reported to induce remodeling of pulmonary arteries. We have previously shown that repeated intranasal exposure of healthy C57BL/6 mice to viable, resting Aspergillus fumigatus conidia leads to the development of chronic pulmonary inflammation and the coevolution of Th1, Th2, and Th17 responses in the lungs. Our objective was to determine whether repeated intranasal exposure to Aspergillus conidia would induce pulmonary arterial remodeling in this mixed Th inflammatory microenvironment. Using weekly intranasal conidial challenges, mice developed robust pulmonary arterial remodeling after eight exposures (but not after two or four). The process was partially mediated by CD4+ T cells and by interleukin-4 (IL-4) production, did not require eosinophils, and was independent of gamma interferon (IFN-γ) and IL-17. Furthermore, remodeling could occur even in the presence of strong Th1 and Th17 responses. Rather than serving an anti-inflammatory function, IL-10 was required for the development of the Th2 response to A. fumigatus conidia. However, in contrast to previous studies of pulmonary arterial remodeling driven by the A. fumigatus allergen, viable conidia also stimulated pulmonary arterial remodeling in the absence of CD4+ T cells. Remodeling was completely abrogated in IL-10−/− mice, suggesting that a second, CD4+ T cell-independent, IL-10-dependent pathway was also driving pulmonary arterial remodeling in response to repeated conidial exposure.
doi:10.1128/IAI.05530-11
PMCID: PMC3255686  PMID: 22064716
24.  Accessory Cardiac Bronchus 
doi:10.1164/rccm.201009-1493IM
PMCID: PMC3081286  PMID: 21471067
25.  Tissue Inhibitor of Matrix-Metalloprotease–1 Predicts Risk of Hepatic Fibrosis in Human Schistosoma japonicum Infection 
The Journal of Infectious Diseases  2011;203(5):707-714.
Background. Schistosomes infect 200 million individuals annually and cause significant hepatic fibrosis in up to 20%. Little is known regarding the mechanisms of schistosome-associated hepatic fibrosis in humans, and few biomarkers for risk of fibrosis have been identified.
Methods. We treated 611 Schistosoma japonicum–infected Filipinos with praziquantel (PZQ) and performed ultrasound to quantify hepatic fibrosis at baseline and 12 months after PZQ treatment. We developed a multiplexed assay (FibroPlex) that quantifies predictors and effect modifiers of fibrosis. We measured FibroPlex analytes produced by peripheral blood mononuclear cells stimulated with schistosome egg antigen 4 weeks after PZQ treatment and related these levels to risk of fibrosis 1 year after PZQ treatment.
Results. After adjusting for potential confounders, including baseline grade of fibrosis, individuals with detectable tissue inhibitor of matrix-metalloprotease–1 (TIMP-1) had a 3.5-fold greater risk of fibrosis 1 year after PZQ treatment, compared with individuals with undetectable levels (odds ratio, 3.48; 95% confidence interval, 1.41–8.43; P = .007).
Discussion Because TIMP-1 inhibits most matrix metalloproteases, which are responsible for collagen degradation, these data suggest that schistosome-associated hepatic fibrosis results, in part, from excessive inhibition of collagen remodeling. These data further suggest that TIMP-1 is a promising biomarker for assessing risk of hepatic fibrosis in schistosomiasis and, potentially, other infectious and noninfectious causes of liver disease.
doi:10.1093/infdis/jiq099
PMCID: PMC3072733  PMID: 21199883

Results 1-25 (43)