Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  A locus on chromosome 9 is associated with differential response of 129S1/SvImJ and FVB/NJ strains of mice to systemic LPS 
Although polymorphisms in TLR receptors and downstream signaling molecules affect the innate immune response, these variants account for only a portion of the ability of the host to respond to microorganisms. To identify novel genes that regulate the host response to systemic lipopolysaccharide (LPS), we created an F2 intercross between susceptible (FVB/NJ) and resistant (129S1/SvImJ) strains, challenged F2 progeny with LPS via intraperitoneal injection, and phenotyped 605 animals for survival and another 500 mice for serum concentrations of IL-1β and IL-6. Genome-wide scans were performed on pools of susceptible and resistant mice for survival, IL-1β, and IL-6. This approach identified a locus on the telomeric end of the q arm of chromosome 9 (0–40 Mb) that was associated with the differences in morbidity and serum concentrations of IL-1β and IL-6 following systemic LPS in FVB/NJ and 129S1/SvImJ strains of mice. Fine mapping narrowed the locus to 3.7 Mb containing 11 known genes, among which are three inflammatory caspases. We studied expression of genes within the locus by quantitative RT-PCR and showed that Casp1 and Casp12 levels are unaffected by LPS in both strains, whereas Casp4 is highly induced by LPS in FVB/NJ but not in 129S1/SvImJ mice. In conclusion, our mapping results indicate that a 3.7-Mb region on chromosome 9 contains a gene that regulates differential response to LPS in 129S1/SvImJ and FVB/NJ strains of mice. Differences in the induction of Casp4 expression by LPS in the two strains suggest that Casp4 is the most likely candidate gene in this region.
PMCID: PMC4157901  PMID: 21720866
2.  Ozone Enhances Pulmonary Innate Immune Response to a Toll-Like Receptor–2 Agonist 
Previous work demonstrated that pre-exposure to ozone primes innate immunity and increases Toll-like receptor–4 (TLR4)–mediated responses to subsequent stimulation with LPS. To explore the pulmonary innate immune response to ozone exposure further, we investigated the effects of ozone in combination with Pam3CYS, a synthetic TLR2/TLR1 agonist. Whole-lung lavage (WLL) and lung tissue were harvested from C57BL/6 mice after exposure to ozone or filtered air, followed by saline or Pam3CYS 24 hours later. Cells and cytokines in the WLL, the surface expression of TLRs on macrophages, and lung RNA genomic expression profiles were examined. We demonstrated an increased WLL cell influx, increased IL-6 and chemokine KC (Cxcl1), and decreased macrophage inflammatory protein (MIP)-1α and TNF-α in response to Pam3CYS as a result of ozone pre-exposure. We also observed the increased cell surface expression of TLR4, TLR2, and TLR1 on macrophages as a result of ozone alone or in combination with Pam3CYS. Gene expression analysis of lung tissue revealed a significant increase in the expression of genes related to injury repair and the cell cycle as a result of ozone alone or in combination with Pam3CYS. Our results extend previous findings with ozone/LPS to other TLR ligands, and suggest that the ozone priming of innate immunity is a general mechanism. Gene expression profiling of lung tissue identified transcriptional networks and genes that contribute to the priming of innate immunity at the molecular level.
PMCID: PMC3547086  PMID: 23002100
ozone; Toll-like receptors; air pollution; gene expression profiles; macrophages
3.  Identification of Novel Innate Immune Genes by Transcriptional Profiling of Macrophages Stimulated with TLR Ligands 
Molecular immunology  2011;48(15-16):1886-1895.
Toll-like receptors (TLRs) are key receptors in innate immunity and trigger responses following interaction with pathogen-associated molecular patterns (PAMPs). TLR3, TLR4 and TLR9 recognize double stranded RNA, lipopolysaccharide (LPS) and CpG DNA, respectively. These receptors differ importantly in downstream adaptor molecules. TLR4 signals through MyD88 and TRIF; in contrast, the TLR3 pathway involves only TRIF while TLR9 signals solely through MyD88. To determine how differences in downstream signaling could influence gene expression in innate immunity, gene expression patterns were determined for the RAW264.7 macrophage cell line stimulated with LPS, poly (I:C), or CpG DNA. Gene expression profiles 6 and 24 hrs post-stimulation were analyzed to determine genes, pathways and transcriptional networks induced. As these experiments showed, the number and extent of genes expressed varied with stimulus. LPS and poly (I:C) induced an abundant array of genes in RAW264.7 cells at 6 hrs and 24 hrs following treatment while CpG DNA induced many fewer. By analyzing data for networks and pathways, we prioritized differentially expressed genes with respect to those common to the three TLR ligands as well as those shared by LPS and poly (I:C) but not CpG DNA. The importance of changes in gene expression was demonstrated by experiments indicating that RNA interference-mediated inhibition of two genes identified in this analysis, PLEC1 and TPST1, reduced IL-6 production by J774A.1 and RAW264.7 macrophages stimulated with LPS. Together, these findings delineate macrophage gene response patterns induced by different PAMPs and identify new genes that have not previously been implicated in innate immunity.
PMCID: PMC3163807  PMID: 21665277
innate immunity; gene expression; RNA interference; lipopolysacharide; poly (I:C); CpG DNA; PLEC1; TPST1
4.  Novel Regulators of the Systemic Response to Lipopolysaccharide 
Our understanding of the role that host genetic factors play in the initiation and severity of infections caused by gram-negative bacteria is incomplete. To identify novel regulators of the host response to lipopolysaccharide (LPS), 11 inbred murine strains were challenged with LPS systemically. In addition to two strains lacking functional TLR4 (C3H/HeJ and C57BL/6JTLR4−/−), three murine strains with functional TLR4 (C57BL/6J, 129/SvImJ, and NZW/LacJ) were found to be relatively resistant to systemic LPS challenge; the other six strains were classified as sensitive. RNA from lung, liver, and spleen tissue was profiled on oligonucleotide microarrays to determine if unique transcripts differentiate susceptible and resistant strains. Gene expression analysis identified the Hedgehog signaling pathway and a number of transcription factors (TFs) involved in the response to LPS. RNA interference–mediated inhibition of six TFs (C/EBP, Cdx-2, E2F1, Hoxa4, Nhlh1, and Tead2) was found to diminish IL-6 and TNF-α production by murine macrophages. Mouse lines with targeted mutations were used to verify the involvement of two novel genes in innate immunity. Compared with wild-type control mice, mice deficient in the E2F1 transcription factor were found to have a reduced inflammatory response to systemic LPS, and mice heterozygote for Ptch, a gene involved in Hedgehog signaling, were found to be more responsive to systemic LPS. Our analysis of gene expression data identified novel pathways and transcription factors that regulate the host response to systemic LPS. Our results provide potential sepsis biomarkers and therapeutic targets that should be further investigated in human populations.
PMCID: PMC3175565  PMID: 21131441
endotoxic shock; gram-negative sepsis; inbred murine strains; gene expression; microarray; transcription factor

Results 1-4 (4)