PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
author:("Wang, pingliu")
1.  Maternal exposure to combustion generated PM inhibits pulmonary Th1 maturation and concomitantly enhances postnatal asthma development in offspring 
Background
Epidemiological studies suggest that maternal exposure to environmental hazards, such as particulate matter, is associated with increased incidence of asthma in childhood. We hypothesized that maternal exposure to combustion derived ultrafine particles containing persistent free radicals (MCP230) disrupts the development of the infant immune system and results in aberrant immune responses to allergens and enhances asthma severity.
Methods
Pregnant C57/BL6 mice received MCP230 or saline by oropharyngeal aspiration on gestational days 10 and 17. Three days after the second administration, blood was collected from MCP230 or saline treated dams and 8-isoprostanes in the serum were measured to assess maternal oxidative stress. Pulmonary T cell populations were assayed in the infant mice at six days, three and six weeks of postnatal age. When the infant mice matured to adults (i.e. six weeks of age), an asthma model was established with ovalbumin (OVA). Airway inflammation, mucus production and airway hyperresponsiveness were then examined.
Results
Maternal exposure to MCP230 induced systemic oxidative stress. The development of pulmonary T helper (Th1/Th2/Th17) and T regulatory (Treg) cells were inhibited in the infant offspring from MCP230-exposed dams. As the offspring matured, the development of Th2 and Treg cells recovered and eventually became equivalent to that of offspring from non-exposed dams. However, Th1 and Th17 cells remained attenuated through 6 weeks of age. Following OVA sensitization and challenge, mice from MCP230-exposed dams exhibited greater airway hyperresponsiveness, eosinophilia and pulmonary Th2 responses compared to offspring from non-exposed dams.
Conclusions
Our data suggest that maternal exposure to MCP230 enhances postnatal asthma development in mice, which might be related to the inhibition of pulmonary Th1 maturation and systemic oxidative stress in the dams.
doi:10.1186/1743-8977-10-29
PMCID: PMC3717277  PMID: 23856009
Maternal exposure; Particulate matter; Offspring; Asthma
2.  Radical-Containing Particles Activate Dendritic Cells and Enhance Th17 Inflammation in a Mouse Model of Asthma 
We identified a previously unrecognized component of airborne particulate matter (PM) formed in combustion and thermal processes, namely, environmentally persistent free radicals (EPFRs). The pulmonary health effects of EPFRs are currently unknown. In the present study, we used a model EPFR-containing pollutant-particle system referred to as MCP230. We evaluated the effects of MCP230 on the phenotype and function of bone marrow–derived dendritic cells (BMDCs) in vitro and lung dendritic cells (DCs) in vivo, and the subsequent T-cell response. We also investigated the adjuvant role of MCP230 on airway inflammation in a mouse model of asthma. MCP230 decreased intracellular reduced glutathione (GSH) and the GSH/oxidized glutathione ratio in BMDCs, and up-regulated the expression of costimulatory molecules CD80 and CD86 on DCs. The maturation of DCs was blocked by inhibiting oxidative stress or the uptake of MCP230. BMDCs exposed to MCP230 increased their antigen-specific T-cell proliferation in vitro. In a model of asthma, exposure to MCP230 exacerbated pulmonary inflammation, which was attributed to the increase of neutrophils and macrophages but not eosinophils. This result correlated with an increase in Th17 cells and cytokines, compared with non–MCP230-treated but ovalbumin (OVA)–challenged mice. The percentage of Th2 cells was comparable between OVA and OVA + MCP230 mice. Our data demonstrate that combustion-generated, EPFR-containing PM directly induced the maturation of DCs in an uptake-dependent and oxidative stress–dependent manner. Furthermore, EPFR-containing PM induced a Th17-biased phenotype in lung, accompanied by significant pulmonary neutrophilia. Exposure to EPFR-containing PM may constitute an important and unrecognized risk factor in the exacerbation and development of a severe asthma phenotype in humans.
doi:10.1165/rcmb.2011-0001OC
PMCID: PMC3262685  PMID: 21493781
EPFR; dendritic cell; asthma; Th17; neutrophil
3.  Multiple synchronous primary malignancies induced by benzene exposure: a case report 
Background
Chronic exposure to high concentrations of benzene is usually associated with the development of haematological diseases. However, solid tumors induced by benzene exposure are less frequent.
Case presentation
We present an unusual case of triple synchronous primary malignancies most likely induced by occupational benzene exposure in a male patient. This spray painter was diagnosed as chronic aplastic anemia in his 21 years old after exposing to high concentration of benzene for three years. Then he was treated with glucocorticoid for four years. 40 years later, this patient developed three synchronous primary neoplasms with three different histologies including a basaloid squamous cell carcinoma of the esophagus, primary hepatocellular carcinoma, and well-differentiated squamous cell carcinoma of the gum.
Conclusion
This case reminds us that the occurrence of solid tumors should be monitored in workers with occupational history linked with a high concentration exposure to benzene, though it's rarely happened.
doi:10.1186/1745-6673-4-7
PMCID: PMC2674456  PMID: 19371416

Results 1-3 (3)