PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Matrices of Physiologic Stiffness Potently Inactivate Idiopathic Pulmonary Fibrosis Fibroblasts 
Fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) have been shown to differ from normal lung fibroblasts in functional behaviors that contribute to the pathogenesis of IPF, including the expression of contractile proteins and proliferation, but how such behaviors vary in matrices with stiffness matched to normal and fibrotic lung tissue remains unknown. Here, we tested whether pathologic changes in matrix stiffness control IPF and normal lung tissue–derived fibroblast functions, and compared the relative efficacy of mechanical cues to an antifibrotic lipid mediator, prostaglandin E2 (PGE2). Fibroblasts were grown on collagen I–coated glass or hydrogel substrates of discrete stiffnesses, spanning the range of normal and fibrotic lung tissue. Traction microscopy was used to quantify contractile function. The CyQuant Cell Proliferation Assay (Invitrogen, Carlsbad, CA) was used to assess changes in cell number, and PGE2 concentrations were measured by ELISA. We confirmed differences in proliferation and PGE2 synthesis between IPF and normal tissue–derived fibroblasts on rigid substrates. However, IPF fibroblasts remained highly responsive to changes in matrix stiffness, and both proliferative and contractile differences between IPF and normal fibroblasts were ablated on physiologically soft matrices. We also confirmed the relative resistance of IPF fibroblasts to PGE2, while demonstrating that decreases in matrix stiffness and the inhibition of Rho kinase both potently attenuate contractile function in IPF-derived fibroblasts. We conclude that pathologic changes in the mechanical environment control important IPF fibroblast functions. Understanding how mechanical cues control fibroblast function may offer new opportunities for targeting these cells, even when they are resistant to antifibrotic pharmacological agents or biological mediators.
doi:10.1165/rcmb.2012-0335OC
PMCID: PMC3653602  PMID: 23258227
pulmonary fibrosis; lung; extracellular matrix; fibroblast contractility
2.  Soft matrix is a natural stimulator for cellular invasiveness 
Molecular Biology of the Cell  2014;25(4):457-469.
ECM softness (low stiffness comparable to soft tissues) alone is sufficient to prevent cell-to-cell adherens junction formation, up-regulate MMP secretion, promote MMP activity, and induce invadosome-like protrusion formation. Such findings suggest that cell invasion in vivo is a spontaneous cell behavior in response to ECM stiffness.
Directional mesenchymal cell invasion in vivo is understood to be a stimulated event and to be regulated by cytokines, chemokines, and types of extracellular matrix (ECM). Instead, by focusing on the cellular response to ECM stiffness, we found that soft ECM (low stiffness) itself is sufficient to prevent stable cell-to-cell adherens junction formation, up-regulate matrix metalloproteinase (MMP) secretion, promote MMP activity, and induce invadosome-like protrusion (ILP) formation. Consistently, similar ILP formation was also detected in a three-dimensional directional invasion assay in soft matrix. Primary human fibroblasts spontaneously form ILPs in a very narrow range of ECM stiffness (0.1–0.4 kPa), and such ILP formation is Src family kinase dependent. In contrast, spontaneous ILP formation in malignant cancer cells and fibrosarcoma cells occurs across a much wider range of ECM stiffness, and these tumor cell ILPs are also more prominent at lower stiffness. These findings suggest that ECM softness is a natural stimulator for cellular invasiveness.
doi:10.1091/mbc.E13-05-0260
PMCID: PMC3923638  PMID: 24336521
3.  Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts 
Inflammatory bowel diseases  2013;19(5):891-903.
Background
Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis.
Methods
The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression.
Results
Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A.
Conclusions
Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease.
doi:10.1097/MIB.0b013e3182813297
PMCID: PMC3766259  PMID: 23502354
Crohn’s disease; inflammatory bowel disease; fibrosis; fibroblast; extracellular matrix; stiffness
4.  Lysophosphatidic acid stimulates EGF-family ectodomain shedding and paracrine signaling from human lung fibroblasts 
Lysophospatidic acid (LPA) is a bioactive lipid mediator implicated in tissue repair and wound healing. It mediates diverse functional effects in fibroblasts, including proliferation, migration and contraction, but less is known about its ability to evoke paracrine signaling to other cell types involved in wound healing. We hypothesized that human pulmonary fibroblasts stimulated by LPA would exhibit ectodomain shedding of EGFR ligands that signal to lung epithelial cells. To test this hypothesis, we used alkaline phosphatase (AP) -tagged EGF receptor (EGFR) ligand plasmids transfected into CCL-151 lung fibroblasts, and ELISAs to detect shedding of native ligands. LPA induced shedding of transfected AP-tagged HB-EGF, amphiregulin and TGF-alpha;non-transfected fibroblasts shed amphiregulin and HB-EGF under baseline conditions, and increased shedding of HB-EGF in response to LPA.. Treatment of fibroblasts with LPA (10 μM) resulted in elevated phosphorylation of ERK1/2 (3.3 ± 0.04 fold induction at 5 minutes), enhanced expression of mRNA for c-fos (59 ± 7.9-fold at 30 minutes), HB-EGF (28 ± 4.7-fold at 4 hours) and amphiregulin (5.7 ± 1.8-fold at 4 hours), and enhanced proliferation at 96 hours. However, none of these fibroblast responses to LPA required ectodomain shedding or EGFR activity. To test the ability of LPA to stimulate paracrine signaling from fibroblasts, we transferred conditioned medium from LPA stimulated- CCL-151 cells, and found enhanced EGFR and ERK1/2 phosphorylation in reporter A549 cells in excess of what could be accounted for by transferred LPA alone. About one-third of th response (37%, P < 0.05) was attributable to EGFR activation. These data demonstrate that LPA mediates EGF-family ectodomain shedding, resulting in enhanced paracrine signaling from lung fibroblasts to epithelial cells.
doi:10.1111/j.1524-475X.2010.00655.x
PMCID: PMC3076689  PMID: 21362091
epidermal growth factor receptor; LPA; A549 cells
5.  Tissue factor-bearing exosome secretion from human mechanically-stimulated bronchial epithelial cells in vitro and in vivo 
Background
Tissue factor (TF), a primary initiator of blood coagulation, also plays a pivotal role in angiogenesis. TF expression in the airways is associated with asthma, a disease characterized in part by subepithelial angiogenesis.
Objectives
To determine potential sources of TF and the mechanisms of its availability in the lung microenvironment.
Methods
Normal Human Bronchial Epithelial (NHBE) cells grown in air-liquid interface (ALI) culture were subjected to a compressive stress of 30 cmH2O; this is comparable to that generated in the airway epithelium during bronchoconstriction in asthma. Conditioned media and cells were harvested to measure TF mRNA and TF protein. We also tested bronchoalveolar lavage fluid (BALF) and airway biopsies from asthmatics and healthy controls for TF.
Results
TF mRNA was upregulated 2.2-fold after 3 hours of stress compared to unstressed cells. Intracellular and secreted TF proteins were enhanced 1.6-fold and over 50-fold, respectively, compared to that of control cells after onset of compression. The amount TF in BALF from patients with asthma was found at mean concentrations that were 5 times greater than that of healthy controls. Immunohistochemical staining of endobronchial biopsies identified epithelial localization of TF with increased expression in asthma.
Exosomes isolated from the conditioned media of NHBECs and BALF of asthmatic subjects by ultracentrifugation contained TF.
Conclusions
Our in vitro and in vivo studies show that mechanically-stressed bronchial epithelial cells are a source of secreted TF and that exosomes are potentially a key carrier of the TF signal.
doi:10.1016/j.jaci.2012.05.031
PMCID: PMC3511625  PMID: 22828416
Asthma; tissue factor; exosomes; bronchoconstriction; mechanotransduction; bronchial epithelium
6.  Micro-Mechanical Characterization of Lung Tissue Using Atomic Force Microscopy 
Matrix stiffness strongly influences growth, differentiation and function of adherent cells1-3. On the macro scale the stiffness of tissues and organs within the human body span several orders of magnitude4. Much less is known about how stiffness varies spatially within tissues, and what the scope and spatial scale of stiffness changes are in disease processes that result in tissue remodeling. To better understand how changes in matrix stiffness contribute to cellular physiology in health and disease, measurements of tissue stiffness obtained at a spatial scale relevant to resident cells are needed. This is particularly true for the lung, a highly compliant and elastic tissue in which matrix remodeling is a prominent feature in diseases such as asthma, emphysema, hypertension and fibrosis. To characterize the local mechanical environment of lung parenchyma at a spatial scale relevant to resident cells, we have developed methods to directly measure the local elastic properties of fresh murine lung tissue using atomic force microscopy (AFM) microindentation. With appropriate choice of AFM indentor, cantilever, and indentation depth, these methods allow measurements of local tissue shear modulus in parallel with phase contrast and fluorescence imaging of the region of interest. Systematic sampling of tissue strips provides maps of tissue mechanical properties that reveal local spatial variations in shear modulus. Correlations between mechanical properties and underlying anatomical and pathological features illustrate how stiffness varies with matrix deposition in fibrosis. These methods can be extended to other soft tissues and disease processes to reveal how local tissue mechanical properties vary across space and disease progression.
doi:10.3791/2911
PMCID: PMC3217627  PMID: 21897356
7.  Stretch-Induced Mitogen-Activated Protein Kinase Activation in Lung Fibroblasts Is Independent of Receptor Tyrosine Kinases 
Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cγ1 (PLCγ1) and activation of the small G-protein Ras. Human lung fibroblasts (LFs) were seeded on matrix-coated silicone membranes and exposed to equibiaxial 10 to 40% static stretch or 20% contraction. LFs were stimulated with EGF, FGF2, or PDGF-BB or exposed to stretch in the presence of inhibitors of EGFR (AG1478), FGFR (PD173074), and PDGFR (AG1296). Phospho-MAPK, phospho-RTK, and phospho-PLCγ1 levels were measured by Western blotting. Active GTP-Ras was quantified by immunoblotting after pull-down with a glutathione S-transferase–Raf-RBD construct. Normalized p-ERK1/2, p-JNK, and p-p38 levels increased after stretch but not contraction. Ligands to RTKs broadly stimulated MAPKs, with the responses to EGF and PDGF most similar to stretch in terms of magnitude and rank order of MAPK responses. Stretching cells failed to elicit measurable activation of EGFR, FGFR (FRS2α phosphorylation), or PDGFR. Potent inhibitors of the kinase activity of each receptor failed to attenuate stretch-induced MAPK activation. PLCγ1 and Ras, prominent effectors downstream of RTKs, were not activated by stretch. Our findings demonstrate that MAPKs are potently activated by stretch in lung fibroblasts, but, in contrast to stress responses observed in other cell types, RTKs are not necessary for stretch-induced MAPK activation in LFs.
doi:10.1165/rcmb.2009-0092OC
PMCID: PMC2911572  PMID: 19684308
mechanotransduction; MAPK; EGFR; FGFR; PDGFR
8.  Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression 
The Journal of Cell Biology  2010;190(4):693-706.
In response to tissue stiffening, fibroblasts increase production of extracellular matrix while decreasing production of matrix-degrading enzymes and the fibrosis inhibitor prostaglandin E2.
Tissue stiffening is a hallmark of fibrotic disorders but has traditionally been regarded as an outcome of fibrosis, not a contributing factor to pathogenesis. In this study, we show that fibrosis induced by bleomycin injury in the murine lung locally increases median tissue stiffness sixfold relative to normal lung parenchyma. Across this pathophysiological stiffness range, cultured lung fibroblasts transition from a surprisingly quiescent state to progressive increases in proliferation and matrix synthesis, accompanied by coordinated decreases in matrix proteolytic gene expression. Increasing matrix stiffness strongly suppresses fibroblast expression of COX-2 (cyclooxygenase-2) and synthesis of prostaglandin E2 (PGE2), an autocrine inhibitor of fibrogenesis. Exogenous PGE2 or an agonist of the prostanoid EP2 receptor completely counteracts the proliferative and matrix synthetic effects caused by increased stiffness. Together, these results demonstrate a dominant role for normal tissue compliance, acting in part through autocrine PGE2, in maintaining fibroblast quiescence and reveal a feedback relationship between matrix stiffening, COX-2 suppression, and fibroblast activation that promotes and amplifies progressive fibrosis.
doi:10.1083/jcb.201004082
PMCID: PMC2928007  PMID: 20733059
9.  Recent Advances and New Opportunities in Lung Mechanobiology 
Journal of biomechanics  2009;43(1):99.
Lung function is inextricably linked to mechanics. On short timescales every breath generates dynamic cycles of cell and matrix stretch, along with convection of fluids in the airways and vasculature. Perturbations such airway smooth muscle shortening or surfactant dysfunction rapidly alter respiratory mechanics, with profound influence on lung function. On longer timescales, lung development, maturation, and remodeling all strongly depend on cues from the mechanical environment. Thus mechanics has long played a central role in our developing understanding of lung biology and respiratory physiology. This concise review focuses on progress over the past five years in elucidating the molecular origins of lung mechanical behavior, and the cellular signaling events triggered by mechanical perturbations that contribute to lung development, homeostasis, and injury. Special emphasis is placed on the tools and approaches opening new avenues for investigation of lung behavior at integrative cellular and molecular scales. We conclude with a brief summary of selected opportunities and challenges that lie ahead for the lung mechanobiology research community.
doi:10.1016/j.jbiomech.2009.09.015
PMCID: PMC2813412  PMID: 19804885
mechanotransduction; extracellular matrix; respiratory; stretch
10.  Chronic Intermittent Mechanical Stress Increases MUC5AC Protein Expression 
Increased abundance of mucin secretory cells is a characteristic feature of the epithelium in asthma and other chronic airway diseases. We showed previously that the mechanical stresses of airway constriction, both in the intact mouse lung and a cell culture model, activate the epidermal growth factor receptor (EGFR), a known modulator of mucin expression in airway epithelial cells. Here we tested whether chronic, intermittent, short-duration compressive stress (30 cm H2O) is sufficient to increase the abundance of MUC5AC-positive cells and intracellular mucin levels in human bronchial epithelial cells cultured at an air–liquid interface. Compressive stress applied for 1 hour per day for 14 days significantly increased the percentage of cells staining positively for MUC5AC protein (22.0 ± 3.8%, mean ± SD) relative to unstimulated controls (8.6 ± 2.6%), and similarly changed intracellular MUC5AC protein levels measured by Western and slot blotting. The effect of compressive stress was gradual, with significant changes in MUC5AC-positive cell numbers evident by Day 7, but required as little as 10 minutes of compressive stress daily. Daily treatment of cells with an EGFR kinase inhibitor (AG1478, 1 μM) significantly but incompletely attenuated the response to compressive stress. Complete attenuation could be accomplished by simultaneous treatment with the combination of AG1478 and a transforming growth factor (TGF)-β2 (1 μg/ml)–neutralizing antibody, or with anti–TGF-β2 alone. Our findings demonstrate that short duration episodes of mechanical stress, representative of those occurring during bronchoconstriction, are sufficient to increase goblet cell number and MUC5AC protein expression in bronchial epithelial cells in vitro. We propose that the mechanical environment present in asthma may fundamentally bias the composition of airway epithelial lining in favor of mucin secretory cells.
doi:10.1165/rcmb.2008-0195OC
PMCID: PMC2746990  PMID: 19168703
asthma; mechanotransduction; EGFR; TGF-β; bronchial epithelium
11.  TNF-α–Converting Enzyme/A Disintegrin and Metalloprotease−17 Mediates Mechanotransduction in Murine Tracheal Epithelial Cells 
Bronchoconstriction applies compressive stress to airway epithelial cells. We show that the application of compressive stress to cultured murine tracheal epithelial cells elicits the increased phosphorylation of extracellular signal–regulated kinase (ERK) and Akt through an epidermal growth factor receptor (EGFR)–dependent process, consistent with previous observations of the bronchoconstriction-induced activation of EGFR in both human and murine airways. Mechanotransduction requires metalloprotease activity, indicating a pivotal role for proteolytic EGF-family ligand shedding. However, cells derived from mice with targeted deletions of the EGFR ligands Tgfα and Hb-egf showed only modest decreases in responses, even when combined with neutralizing antibodies to the EGFR ligands epiregulin and amphiregulin, suggesting redundant or compensatory roles for individual EGF family members in mechanotransduction. In contrast, cells harvested from mice with a conditional deletion of the gene encoding the TNF-α–converting enzyme (TACE/ADAM17), a sheddase for multiple EGF-family proligands, displayed a near-complete attenuation of ERK and Akt phosphorylation responses and compressive stress–induced gene regulation. Our data provide strong evidence that TACE plays a critical central role in the transduction of compressive stress.
doi:10.1165/rcmb.2010-0234OC
PMCID: PMC3175563  PMID: 21097655
asthma; airway remodelling; TACE
12.  Matrix Rigidity Regulates Cancer Cell Growth by Modulating Cellular Metabolism and Protein Synthesis 
PLoS ONE  2012;7(5):e37231.
Background
Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.
Methodology/Principal Findings
This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150–300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.
Conclusions/Significance
The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.
doi:10.1371/journal.pone.0037231
PMCID: PMC3356407  PMID: 22623999
13.  A Multiwell Platform for Studying Stiffness-Dependent Cell Biology 
PLoS ONE  2011;6(5):e19929.
Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.
doi:10.1371/journal.pone.0019929
PMCID: PMC3103526  PMID: 21637769
14.  Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype 
PLoS ONE  2010;5(9):e12905.
Background
The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines.
Methodology/Principal Findings
In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.
Conclusions/Significance
These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.
doi:10.1371/journal.pone.0012905
PMCID: PMC2944843  PMID: 20886123
15.  Universal physical responses to stretch in the living cell 
Nature  2007;447(7144):592-595.
With every beat of the heart, inflation of the lung or peristalsis of the gut, cell types of diverse function are subjected to substantial stretch. Stretch is a potent stimulus for growth, differentiation, migration, remodelling and gene expression1,2. Here, we report that in response to transient stretch the cytoskeleton fluidizes in such a way as to define a universal response class. This finding implicates mechanisms mediated not only by specific signalling intermediates, as is usually assumed, but also by non-specific actions of a slowly evolving network of physical forces. These results support the idea that the cell interior is at once a crowded chemical space3 and a fragile soft material in which the effects of biochemistry, molecular crowding and physical forces are complex and inseparable, yet conspire nonetheless to yield remarkably simple phenomenological laws. These laws seem to be both universal and primitive, and thus comprise a striking intersection between the worlds of cell biology and soft matter physics.
doi:10.1038/nature05824
PMCID: PMC2440511  PMID: 17538621
16.  Induction of the Plasminogen Activator System by Mechanical Stimulation of Human Bronchial Epithelial Cells 
Mechanical stimulation of the airway epithelium, as would occur during bronchoconstriction, is a potent stimulus and can activate profibrotic pathways. We used DNA microarray technology to examine gene expression in compressed normal human bronchial epithelial cells (NHBE). Compressive stress applied continuously over an 8-h period to NHBE cells led to the upregulation of several families of genes, including a family of plasminogen-related genes that were previously not known to be regulated in this system. Real-time PCR demonstrated a peak increase in gene expression of 8.0-fold for urokinase plasminogen activator (uPA), 16.2-fold for urokinase plasminogen activator receptor (uPAR), 4.2-fold for plasminogen activator inhibitor-1 (PAI-1), and 3.9-fold for tissue plasminogen activator (tPA). Compressive stress also increased uPA protein levels in the cell lysates (112.0 versus 82.0 ng/ml, P = 0.0004), and increased uPA (4.7 versus 3.3 ng/ml, P = 0.02), uPAR (1.3 versus 0.86 ng/ml, P = 0.007), and PAI-1 (50 versus 36 ng/ml, P = 0.006) protein levels in cell culture media. Functional studies demonstrated increased urokinase-dependent plasmin generation in compression-stimulated cells (0.0090 versus 0.0033 OD/min, P = 0.03). In addition, compression led to increased activation of matrix metalloproteinase (MMP)-9 and MMP-2 in a urokinase-dependent manner. In postmortem human lung tissue, we observed an increase in epithelial uPA and uPAR immunostaining in the airways of two patients who died in status asthmaticus compared with minimal immunoreactivity noted in airways from seven lung donors without asthma. Together these observations suggest an integrated response of airway epithelial cells to mechanical stimulation, acting through the plasminogen-activating system to modify the airway microenvironment.
doi:10.1165/rcmb.2006-0040OC
PMCID: PMC2643292  PMID: 16794260
plasminogen activator system; matrix metalloproteinase 9; bronchial epithelial cells; mechanical stimulation; DNA microarrays

Results 1-16 (16)