PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
2.  Functional analysis of arylamine N-acetyltransferase 1 (NAT1) NAT1*10 haplotypes in a complete NATb mRNA construct 
Carcinogenesis  2011;33(2):348-355.
N-acetyltransferase 1 (NAT1) catalyzes N-acetylation of arylamines as well as the O-acetylation of N-hydroxylated arylamines. O-acetylation leads to the formation of electrophilic intermediates that result in DNA adducts and mutations. NAT1*10 is the most common variant haplotype and is associated with increased risk for numerous cancers. NAT1 is transcribed from a major promoter, NATb, and an alternative promoter, NATa, resulting in messenger RNAs (mRNAs) with distinct 5′-untranslated regions (UTRs). To best mimic in vivo metabolism and the effect of NAT1*10 polymorphisms on polyadenylation usage, pcDNA5/Flp recombination target plasmid constructs were prepared for transfection of full-length human mRNAs including the 5′-UTR derived from NATb, the open reading frame and 888 nucleotides of the 3′-UTR. Following stable transfection of NAT1*4, NAT1*10 and an additional NAT1*10 variant (termed NAT1*10B) into nucleotide excision repair-deficient Chinese hamster ovary cells, N- and O-acetyltransferase activity (in vitro and in situ), mRNA and protein expression were higher in cells transfected with NAT1*10 and NAT1*10B than in cells transfected with NAT1*4 (P < 0.05). Consistent with NAT1 expression and activity, cytotoxicity and hypoxanthine phosphoribosyl transferase mutants following 4-aminobiphenyl exposures were higher in NAT1*10 than in NAT1*4 transfected cells. Ribonuclease protection assays showed no difference between NAT1*4 and NAT1*10. However, protection of one probe by NAT1*10B was not observed with NAT1*4 or NAT1*10, suggesting additional mechanisms that regulate NAT1*10B. The higher mutants in cells transfected with NAT1*10 and NAT1*10B are consistent with an increased cancer risk for individuals possessing NAT1*10 haplotypes.
doi:10.1093/carcin/bgr273
PMCID: PMC3271262  PMID: 22114069
3.  Histone Acetylation Regulates the Cell-Specific and Interferon-γ–Inducible Expression of Extracellular Superoxide Dismutase in Human Pulmonary Arteries 
Extracellular superoxide dismutase (EC-SOD) is the major antioxidant enzyme present in the vascular wall, and is responsible for both the protection of vessels from oxidative stress and for the modulation of vascular tone. Concentrations of EC-SOD in human pulmonary arteries are very high relative to other tissues, and the expression of EC-SOD appears highly restricted to smooth muscle. The molecular basis for this smooth muscle–specific expression of EC-SOD is not known. Here we assessed the role of epigenetic factors in regulating the cell-specific and IFN-γ–inducible expression of EC-SOD in human pulmonary artery cells. The analysis of CpG site methylation within the promoter and coding regions of the EC-SOD gene demonstrated higher levels of DNA methylation within the distal promoter region in endothelial cells compared with smooth muscle cells. Exposure of both cell types to DNA demethylation agents reactivated the transcription of EC-SOD in endothelial cells alone. However, exposure to the histone deacetylase inhibitor trichostatin A (TSA) significantly induced EC-SOD gene expression in both endothelial cells and smooth muscle cells. Concentrations of EC-SOD mRNA were also induced up to 45-fold by IFN-γ in smooth muscle cells, but not in endothelial cells. The IFN-γ–dependent expression of EC-SOD was regulated by the Janus tyrosine kinase/signal transducers and activators of transcription proteins signaling pathway. Simultaneous exposure to TSA and IFN-γ produced a synergistic effect on the induction of EC-SOD gene expression, but only in endothelial cells. These findings provide strong evidence that EC-SOD cell-specific and IFN-γ–inducible expression in pulmonary artery cells is regulated, to a major degree, by epigenetic mechanisms that include histone acetylation and DNA methylation.
doi:10.1165/rcmb.2011-0012OC
PMCID: PMC3262691  PMID: 21493784
extracellular superoxide dismutase; promoter; epigenetic; transcription; pulmonary arteries; endothelial cells; smooth muscle cells

Results 1-3 (3)