PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Targeted Aerosolized Delivery of Ascorbate in the Lungs of Chlorine-Exposed Rats 
Abstract
Background
Chlorine (Cl2)-induced lung injury is a serious public health threat that may result from industrial and household accidents. Post-Cl2 administration of aerosolized ascorbate in rodents decreased lung injury and mortality. However, the extent to which aerosolized ascorbate augments depleted ascorbate stores in distal lung compartments has not been assessed.
Methods
We exposed rats to Cl2 (300 ppm for 30 min) and returned them to room air. Within 15–30 min postexposure, rats breathed aerosolized ascorbate and desferal or vehicle (mean particle size 3.3 μm) through a nose-only exposure system for 60 min and were euthanized. We measured the concentrations of reduced ascorbate in the bronchoalveolar lavage (BAL), plasma, and lung tissues with high-pressure liquid chromatography, protein plasma concentration in the BAL, and the volume of the epithelia lining fluid (ELF).
Results
Cl2-exposed rats that breathed aerosolized vehicle had lower values of ascorbate in their BAL, ELF, and lung tissues compared to air-breathing rats. Delivery of aerosolized ascorbate increased reduced ascorbate in BAL, ELF, lung tissues, and plasma of both Cl2 and air-exposed rats without causing lung injury. Based on mean diameter of aerosolized particles and airway sizes we calculated that approximately 5% and 1% of inhaled ascorbate was deposited in distal lung regions of air and Cl2-exposed rats, respectively. Significantly higher ascorbate levels were present in the BAL of Cl2-exposed rats when aerosol delivery was initiated 1 h post-Cl2.
Conclusions
Aerosol administration is an effective, safe, and noninvasive method for the delivery of low molecular weight antioxidants to the lungs of Cl2-exposed individuals for the purpose of decreasing morbidity and mortality. Delivery is most effective when initiated 1 h postexposure when the effects of Cl2 on minute ventilation subside.
doi:10.1089/jamp.2011.0963
PMCID: PMC3552173  PMID: 22393907
epithelial lining fluid; bronchoalveolar lavage; lung injury; HPLC; urea
2.  Post Chlorine gas exposure administration of nitrite prevents lung injury: effect of administration modality 
Free radical biology & medicine  2012;53(7):1431-1439.
Cl2 gas toxicity is complex and occurs during, and post exposure leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl2 exposure can occur in diverse situations encompassing mass casualty scenarios underscoring the need for post-exposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we compared the efficacy of a single dose, post (30min) Cl2 exposure administration of nitrite (1mg/kg) via intraperitoneal (IP) or intramuscular (IM) injection in rats, to decrease ALI. Exposure of rats to Cl2 gas (400ppm, 30min) significantly increased ALI and caused RAS 6–24h post exposure as indexed by BAL sampling of lung surface protein, PMN and increased airway resistance and elastance prior to and post methacholine challenge. IP nitrite decreased Cl2 - dependent increases in BAL protein but not PMN. In contrast IM nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase independent manner. Histological evaluation of airways 6h post exposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl2 exposed rats. Both IP and IM nitrite improved airway histology compared to Cl2 gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with IM compared to IP nitrite. Airways were rendered more sensitive to methacholine induced resistance and elastance after Cl2 gas exposure. Interestingly, IM nitrite, but not IP nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of IM and IP therapy showed a two-fold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl2 exposure dependent increases in circulating leukocytes. Halving the IM nitrite dose resulted in no effect in PMN accumulation but significant reduction of of BAL protein levels indicating distinct nitrite dose dependence for inhibition of Cl2 dependent lung permeability and inflammation. These data highlight the potential for nitrite as a post-exposure therapeutic for Cl2 gas induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics.
doi:10.1016/j.freeradbiomed.2012.08.007
PMCID: PMC3448851  PMID: 22917977
inhaled irritants; nitric oxide; inflammation; lung; nitrite
3.  Desferrioxamine Inhibits Protein Tyrosine Nitration: Mechanisms and Implications 
Free radical biology & medicine  2012;53(4):951-961.
Tissues are exposed to exogenous and endogenous nitrogen dioxide (•NO2), which is the terminal agent in protein tyrosine nitration. Besides iron chelation, the hydroxamic acid (HA) desferrioxamine (DFO) shows multiple functionalities including nitration inhibition. To investigate mechanisms whereby DFO affects 3-nitrotyrosine (3-NT) formation, we utilized gas phase •NO2 exposures, to limit introduction of other reactive species, and a lung surface model wherein red cell membranes (RCM) were immobilized under a defined aqueous film. When RCM were exposed to •NO2 covered by +/− DFO: (i) DFO inhibited 3-NT formation more effectively than other HA and non-HA chelators; (ii) 3-NT inhibition occurred at very low [DFO] for prolonged times; and (iii) 3-NT formation was iron independent but inhibition required DFO present. DFO poorly reacted with •NO2 compared to ascorbate, assessed via •NO2 reactive absorption and aqueous phase oxidation rates, yet limited 3-NT formation at far lower concentrations. DFO also inhibited nitration under aqueous bulk phase conditions, and inhibited 3-NT generated by active myeloperoxidase “bound” to RCM. Per the above and kinetic analyses suggesting preferential DFO versus •NO2 reaction within membranes, we conclude that DFO inhibits 3-NT formation predominantly by facile repair of the tyrosyl radical intermediate, which prevents •NO2 addition, and thus nitration, and potentially influences biochemical functionalities.
doi:10.1016/j.freeradbiomed.2012.06.003
PMCID: PMC3462664  PMID: 22705369
Desferrioxamine; nitrogen dioxide; membrane proteins; hydroxamic acids; epithelial lining fluid; nitration; tyrosine; tyrosyl radicals; repair; reduction
4.  Transforming growth factor beta suppresses glutamate cysteine ligase gene expression and induces oxidative stress in a lung fibrosis model 
Free radical biology & medicine  2012;53(3):554-563.
The concentration of glutathione (GSH), the most abundant intracellular free thiol and an important antioxidant, is decreased in the lung in both fibrotic diseases and experimental fibrosis models. The underlying mechanisms and biological significance of GSH depletion, however, remain unclear. Transforming growth factor beta (TGF-β) is the most potent and ubiquitous profibrogenic cytokine and its expression is increased in almost all fibrotic diseases. In this study, we show that increasing TGF-β1 expression in mouse lung to a level comparable to those found in lung fibrotic diseases by intranasal instillation of AdTGF-β1223/225, an adenovirus expressing constitutively active TGF-β1, suppressed the expression of both catalytic and modifier subunits of glutamate cysteine ligase (GCL), the rate-limiting enzyme in de novo GSH synthesis, decreased GSH concentration, and increased protein and lipid peroxidation in mouse lung. Furthermore, we show that increasing TGF-β1 expression activated JNK and induced activating transcription factor 3 (ATF3), a transcriptional repressor involved in the regulation of the catalytic subunit of GCL (GCLC), in mouse lung. Control virus (AdDL70-3) had no significant effect on any of these parameters, compared to saline treated control. Concurrent with GSH depletion, TGF-β1 induced lung epithelial apoptosis and robust pulmonary fibrosis. Importantly, lung GSH levels returned to the normal whereas fibrosis persisted at least 21 days after TGF-β1 instillation. Together, the data suggest that increased TGF-β1 expression may contribute to the GSH depletion observed in pulmonary fibrosis diseases and that GSH depletion may be an early event in, rather than a consequence of, fibrosis development.
doi:10.1016/j.freeradbiomed.2012.05.016
PMCID: PMC3432394  PMID: 22634145
GSH depletion; lung fibrosis; transforming growth factor beta 1; glutamate cysteine ligase; oxidative stress
5.  Comparative Computational Modeling of Airflows and Vapor Dosimetry in the Respiratory Tracts of Rat, Monkey, and Human 
Toxicological Sciences  2012;128(2):500-516.
Computational fluid dynamics (CFD) models are useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. We improved the imaging and model development methods to the point where CFD models for the rat, monkey, and human now encompass airways from the nose or mouth to the lung. A total of 1272, 2172, and 135 pulmonary airways representing 17±7, 19±9, or 9±2 airway generations were included in the rat, monkey and human models, respectively. A CFD/physiologically based pharmacokinetic model previously developed for acrolein was adapted for these anatomically correct extended airway models. Model parameters were obtained from the literature or measured directly. Airflow and acrolein uptake patterns were determined under steady-state inhalation conditions to provide direct comparisons with prior data and nasal-only simulations. Results confirmed that regional uptake was sensitive to airway geometry, airflow rates, acrolein concentrations, air:tissue partition coefficients, tissue thickness, and the maximum rate of metabolism. Nasal extraction efficiencies were predicted to be greatest in the rat, followed by the monkey, and then the human. For both nasal and oral breathing modes in humans, higher uptake rates were predicted for lower tracheobronchial tissues than either the rat or monkey. These extended airway models provide a unique foundation for comparing material transport and site-specific tissue uptake across a significantly greater range of conducting airways in the rat, monkey, and human than prior CFD models.
doi:10.1093/toxsci/kfs168
PMCID: PMC3524950  PMID: 22584687
CFD; PBPK; respiratory airflows; respiratory dosimetry; acrolein.
6.  Glutathione suppresses TGF-β-induced PAI-1 expression by inhibiting p38 and JNK MAPK and the binding of AP-1, SP-1, and Smad to the PAI-1 promoter 
Transforming growth factor (TGF)-β upregulates plasminogen activator inhibitor type 1 (PAI-1) in a variety of cell types, and PAI-1 is considered to be an essential factor for the development of fibrosis. Our previous studies demonstrated that TGF-β decreased intracellular glutathione (GSH) content in murine embryonic fibroblasts (NIH/3T3 cells), whereas treatment of the cells with GSH, which restored intracellular GSH concentration, inhibited TGF-β-induced collagen accumulation by blocking PAI-1 expression and enhancing collagen degradation. In the present study, we demonstrate that GSH blocks TGF-β-induced PAI-1 promoter activity in NIH/3T3 cells, which is associated with an inhibition of TGF-β-induced JNK and p38 phosphorylation. Interestingly, although exogenous GSH does not affect phosphorylation and/or nuclear translocation of Smad2/3 and Smad4, it completely eliminates TGF-β-induced binding of transcription factors to not only AP-1 and SP-1 but also Smad cis elements in the PAI-1 promoter. Decoy oligonucleotides (ODN) studies further demonstrate that AP-1, SP-1, and Smad ODNs abrogate the inhibitory effect of GSH on TGF-β-induced PAI-1 promoter activity and inhibit TGF-β-induced expression of endogenous PAI-1. Furthermore, we show that GSH reduces TGF-β-stimulated reactive oxygen species (ROS) signal. Blocking ROS production with diphenyleneiodonium or scavenging ROS with a superoxide dismutase and catalase mimetic MnTBaP dramatically reduces TGF-β-induced p38 and JNK phosphorylation as well as PAI-1 gene expression. In composite, these findings suggest that GSH inhibits TGF-β-stimulated PAI-1 expression in fibroblasts by blocking the JNK/p38 pathway, probably by reducing ROS, which leads to an inhibition of the binding of transcription factors to the AP-1, SP-1, and Smad cis elements in the PAI-1 promoter.
doi:10.1152/ajplung.00128.2007
PMCID: PMC3686828  PMID: 17890327
transforming growth factor-β; plasminogen activator inhibitor-1; mitogen-activated protein kinase
7.  Post-Exposure Antioxidant Treatment in Rats Decreases Airway Hyperplasia and Hyperreactivity Due to Chlorine Inhalation 
We assessed the safety and efficacy of combined intravenous and aerosolized antioxidant administration to attenuate chlorine gas–induced airway alterations when administered after exposure. Adult male Sprague-Dawley rats were exposed to air or 400 parts per million (ppm) chlorine (a concentration likely to be encountered in the vicinity of industrial accidents) in environmental chambers for 30 minutes, and returned to room air, and they then received a single intravenous injection of ascorbic acid and deferoxamine or saline. At 1 hour and 15 hours after chlorine exposure, the rats were treated with aerosolized ascorbate and deferoxamine or vehicle. Lung antioxidant profiles, plasma ascorbate concentrations, airway morphology, and airway reactivity were evaluated at 24 hours and 7 days after chlorine exposure. At 24 hours after exposure, chlorine-exposed rats had significantly lower pulmonary ascorbate and reduced glutathione concentrations. Treatment with antioxidants restored depleted ascorbate in lungs and plasma. At 7 days after exposure, in chlorine-exposed, vehicle-treated rats, the thickness of the proximal airways was 60% greater than in control rats, with twice the amount of mucosubstances. Airway resistance in response to methacholine challenge was also significantly elevated. Combined treatment with intravenous and aerosolized antioxidants restored airway morphology, the amount of airway mucosubstances, and airway reactivity to control levels by 7 days after chlorine exposure. Our results demonstrate for the first time, to the best of our knowledge, that severe injury to major airways in rats exposed to chlorine, as characterized by epithelial hyperplasia, mucus accumulation, and airway hyperreactivity, can be reversed in a safe and efficacious manner by the post-exposure administration of ascorbate and deferoxamine.
doi:10.1165/rcmb.2011-0196OC
PMCID: PMC3359900  PMID: 22162906
epithelial injury; epithelial repair; mucosubstances; ascorbate; deferoxamine; aerosol
8.  On the Hydrophobicity of Nitrogen Dioxide: Could there be a “lens” effect for NO2 reaction kinetics? 
Solvent “lens” effects for the reaction kinetics of NO2 can be evaluated on the basis of published Henry’s law constants for nitrogen dioxide in various solvents. Water-to-organic solvent partition coefficients were derived from Henry’s law constants and used to assess the tendencies of NO2 toward fleeing the aqueous environments and concentrating in biological hydrophobic media. It is concluded, based only on the estimated aqueous medium-to-cell membrane partition coefficient for NO2, that such tendencies will be relatively small, and that they may account for an acceleration of chemical reactions in biological hydrophobic media with reaction kinetics that are first order on NO2 by a factor of approximately 3 ± 1. Thus, kinetic effects due to mass action will be relatively small but it is also important to recognize that because NO2 will tend to dissolve in cell membranes, reactions with cell membrane components will not be hindered by lack of physical solubility at these loci. In comparison to other gases, nitrogen dioxide is less hydrophobic than NO, O2 and N2.
doi:10.1016/j.niox.2009.05.008
PMCID: PMC2795573  PMID: 19540354
Nitrogen dioxide; partition coefficient; Henry’s law constant; solubility; kinetics; reactivity; compartmentation
9.  Scavenger receptors clear the air 
Journal of Clinical Investigation  2007;117(3):601-604.
Inhaled environmental oxidants, such as ozone and particulates, have been variably linked to epithelial injury, inflammation, and perturbations in lung development, growth, and function. Reactions between ozone and lung surface lipids likely account for exposure-related pathophysiologic sequelae. In this issue of the JCI, Dahl et al. document a previously unrecognized pulmonary defense against inhaled oxidants in mice: macrophage scavenger receptors (SRs) bind proinflammatory oxidized lipids, thereby decreasing pulmonary inflammation (see the related article beginning on page 757). The study adds to our knowledge of diverse lung oxidative processes and identifies a potential regulatory mechanism governing pulmonary inflammation. Further investigations to elucidate more precise mechanisms and to determine the influence of SRs on airway epithelial injury, repair, and remodeling are warranted.
doi:10.1172/JCI31549
PMCID: PMC1804350  PMID: 17332891
10.  Ascorbate and Deferoxamine Administration after Chlorine Exposure Decrease Mortality and Lung Injury in Mice 
Chlorine (Cl2) gas exposure poses an environmental and occupational hazard that frequently results in acute lung injury. There is no effective treatment. We assessed the efficacy of antioxidants, administered after exposure, in decreasing mortality and lung injury in C57BL/6 mice exposed to 600 ppm of Cl2 for 45 minutes and returned to room air. Ascorbate and deferoxamine were administered intramuscularly every 12 hours and by nose-only inhalation every 24 hours for 3 days starting after 1 hour after exposure. Control mice were exposed to Cl2 and treated with vehicle (saline or water). Mortality was reduced fourfold in the treatment group compared with the control group (22 versus 78%; P = 0.007). Surviving animals in the treatment group had significantly lower protein concentrations, cell counts, and epithelial cells in their bronchoalveolar lavage (BAL). Lung tissue ascorbate correlated inversely with BAL protein as well as with the number of neutrophils and epithelial cells. In addition, lipid peroxidation was reduced threefold in the BAL of mice treated with ascorbate and deferoxamine when compared with the control group. Administration of ascorbate and deferoxamine reduces mortality and decreases lung injury through reduction of alveolar–capillary permeability, inflammation, and epithelial sloughing and lipid peroxidation.
doi:10.1165/rcmb.2010-0432OC
PMCID: PMC3175564  PMID: 21131440
acute lung injury; oxidative stress; survival; aerosols; antioxidants
11.  Chlorine Gas Exposure Causes Systemic Endothelial Dysfunction by Inhibiting Endothelial Nitric Oxide Synthase–Dependent Signaling 
Chlorine gas (Cl2) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl2 exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl2 promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl2 for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl2 dose (0–400 ppm) and time after exposure (0–48 h) were determined. Exposure to Cl2 (250–400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl2–exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl2 exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl2–exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl2 exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms.
doi:10.1165/rcmb.2010-0151OC
PMCID: PMC3175567  PMID: 21131444
endothelium; nitric oxide; inflammation; inhaled reactive oxidants
12.  Exposing Animals to Oxidant Gases 
Inhalation experiments using laboratory animals are performed under controlled conditions to assess the toxicity of and to investigate interventional strategies to ameliorate injury resulting from oxidant gas exposures. A variety of dynamic inhalation exposure systems that use whole-body or nose-only exposure chambers have been developed for rodents. In a whole-body exposure chamber, the animals are immersed in the test atmosphere, whereas in nose-only or head-only exposure systems, exposures are localized primarily to the head and/or nasal regions. There are advantages and disadvantages with both types of exposure approaches. Considerations such as animal number, exposure duration, end points of study, and availability of test material should influence the selection of a particular exposure system.
doi:10.1513/pats.201001-001SM
PMCID: PMC3136962  PMID: 20601630
chlorine; inhalation exposure; exposure chamber
13.  Mechanisms and Modification of Chlorine-induced Lung Injury in Animals 
Chlorine (Cl2) is a reactive oxidant gas used extensively in industrial processes. Exposure of both humans and animals to high concentrations of Cl2 results in acute lung injury, which may resolve spontaneously or progress to acute respiratory failure. Injury to airway and alveolar epithelium may result from chemical reactions of Cl2, from HOCl (the hydrolysis product of Cl2), and/or from the various reaction products, such as chloramines, that are formed from the reactions of these chlorinating species with biological molecules. Subsequent reactions may initiate self-propagating reactions and induce the production of inflammatory mediators compounding injury to pulmonary surfactant, ion channels, and components of lung epithelial and airway cells. Low-molecular-weight antioxidants, such as ascorbate, glutathione, and urate, present in the lung epithelial lining fluid and tissue, remove Cl2 and HOCl and thus decrease injury to critical target biological targets. However, levels of lung antioxidants of animals exposed to Cl2 in concentrations likely to be encountered in the vicinity of industrial accidents decrease rapidly and irreversibly. Our measurements show that prophylactic administration of a mixture containing ascorbate and desferal N-acetyl-cysteine, a precursor of reduced glutathione, prevents Cl2-induced injury to the alveolar epithelium of rats exposed to Cl2. The clinical challenge is to deliver sufficient quantities of antioxidants noninvasively, after Cl2 exposure, to decrease morbidity and mortality.
doi:10.1513/pats.201001-009SM
PMCID: PMC3136964  PMID: 20601632
ascorbate; N-acetyl-cysteine; chlorine; alveolar epithelium; hypochlorous acid
14.  γ-Glutamyl transpeptidase is induced by 4-hydroxynonenal via EpRE/Nrf2 signaling in rat epithelial type II cells 
Free radical biology & medicine  2005;40(8):1281-1292.
γ-Glutamyl transpeptidase (GGT) plays key roles in glutathione homeostasis and metabolism of glutathione S-conjugates. Rat GGT is transcribed via five tandemly arranged promoters into seven transcripts. The transcription of mRNAV is controlled by promoter 5. Previously we found that GGT mRNAV-2 was responsible for the induction of GGT in rat alveolar epithelial cells by 4-hydroxynonenal (HNE). In the current study, the underlying mechanism was investigated. Reporter deletion and mutation analysis demonstrated that an electrophile-response element (EpRE) in the proximal region of GGT promoter 5 (GP5) was responsible for the basal- and HNE-induced promoter activity. Gel-shift assays showed an increased binding activity of GP5 EpRE after HNE exposure. The nuclear content of NF-E2-related factor 2 (Nrf2) was significantly increased by HNE. The recruitment of Nrf2 to GP5 EpRE after HNE treatment was demonstrated by supershift and chromatin immunoprecipitation assays. The tissue expression pattern of GGT mRNA V was previously unknown. Using polymerase chain reaction, we found that GGT mRNAV-2 was expressed in many tissues in rat. Taken together, GGT mRNAV-2 is widely expressed in rat tissues and its basal and HNE-induced expression is mediated through EpRE/Nrf2 signaling.
doi:10.1016/j.freeradbiomed.2005.11.005
PMCID: PMC2702664  PMID: 16631518
γ-Glutamyl transpeptidase; 4-Hydroxy-2-nonenal; Glutathione; EpRE; Nrf2; Tissue distribution; Free radicals
15.  4-Hydroxynonenal Induces Rat γ-Glutamyl Transpeptidase through Mitogen-Activated Protein Kinase-Mediated Electrophile Response Element/Nuclear Factor Erythroid 2-Related Factor 2 Signaling 
γ-Glutamyl transpeptidase (GGT) plays critical roles in glutathione homeostasis and metabolism. Rat GGT is a single-copy gene from which seven types of GGT mRNA with a common protein encoding sequence, but different 5′-untranslated regions, may be transcribed. We previously showed that type V-2 was the predominant form of GGT mRNA in rat L2 epithelial cells, and that it could be induced by 4-hydroxynonenal (HNE) through the electrophile response element (EpRE) located in GGT promoter 5 (GP5). Here, we report transcription factors binding to GP5 EpRE and the involved signaling pathways. Immunodepletion gel shift assays demonstrated that GP5 EpRE bound JunB, c-Jun, FosB, and Fra2 from unstimulated cells, and that after exposure to HNE, EpRE binding complexes contained nuclear factor erythroid 2-related factor (Nrf) 1, Nrf2, JunB, c-Jun, FosB, c-Fos, Fra1, and Fra2. HNE-induced binding of Nrf2 and c-Jun in GP5 EpRE was confirmed by chromatin immunoprecipitation assays. Using reporter assays and specific inhibitors, we found that HNE induction of rat GGT mRNA V-2 was dependent on activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), but not protein kinase C or phosphatidylinositol 3-kinase. Pretreatment with ERK and p38MAPK inhibitors also blocked HNE-increased EpRE binding. HNE-increased nuclear content of Nrf1, Nrf2, and c-Jun in L2 cells was partially blocked by inhibition of either ERK1/2 or p38MAPK and completely blocked by simultaneous inhibition of both MAPKs. In conclusion, HNE induces GGT mRNA V-2 through altered EpRE transcription factor binding mediated by both ERK and p38MAPK.
doi:10.1165/rcmb.2005-0280OC
PMCID: PMC2696200  PMID: 16195535
electrophile response element; γ-glutamyl transpeptidase; glutathione; 4-hydroxynonenal; nuclear factor erythroid 2-related factor 2
16.  Early Life Ozone Exposure Results in Dysregulated Innate Immune Function and Altered microRNA Expression in Airway Epithelium 
PLoS ONE  2014;9(3):e90401.
Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s) behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS) that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following in vivo LPS challenge or, in response to in vitro LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by in vivo LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary in vitro LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3′ UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the epithelial innate immune response towards microbes in the mature lung.
doi:10.1371/journal.pone.0090401
PMCID: PMC3942419  PMID: 24594710

Results 1-16 (16)