PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (53)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  sRAGE Induces Human Monocyte Survival and Differentiation 
The receptor for advanced glycation end products (RAGE) is produced either as a transmembrane or soluble form (sRAGE). Substantial evidence supports a role for RAGE and its ligands in disease. sRAGE is reported to be a competitive, negative regulator of membrane RAGE activation, inhibiting ligand binding. However, some reports indicate that sRAGE is associated with inflammatory disease. We sought to define the biological function of sRAGE on inflammatory cell recruitment, survival, and differentiation in vivo and in vitro. To test the in vivo impact of sRAGE, the recombinant protein was intratracheally administered to mice, which demonstrated monocyte- and neutrophil-mediated lung inflammation. We also observed that sRAGE induced human monocyte and neutrophil migration in vitro. Human monocytes treated with sRAGE produced proinflammatory cytokines and chemokines. Our data demonstrated that sRAGE directly bound human monocytes and monocyte-derived macrophages. Binding of sRAGE to monocytes promoted their survival and differentiation to macrophages. Furthermore, sRAGE binding to cells increased during maturation, which was similar in freshly isolated mouse monocytes compared with mature tissue macrophages. Because sRAGE activated cell survival and differentiation, we examined intracellular pathways that were activated by sRAGE. In primary human monocytes and macrophages, sRAGE treatment activated Akt, Erk, and NF-κB, and their activation appeared to be critical for cell survival and differentiation. Our data suggest a novel role for sRAGE in monocyte- and neutrophil-mediated inflammation and mononuclear phagocyte survival and differentiation.
doi:10.4049/jimmunol.0903398
PMCID: PMC3671884  PMID: 20574008
2.  Hypoxia Inducible Factors-Mediated Inhibition of Cancer by GM-CSF: A Mathematical Model 
Bulletin of mathematical biology  2012;74(11):2752-2777.
Under hypoxia, tumor cells, and tumor-associated macrophages produce VEGF (vascular endothelial growth factor), a signaling molecule that induces angiogenesis. The same macrophages, when treated with GM-CSF (granulocyte/macrophage colony-stimulating factor), produce sVEGFR-1 (soluble VEGF receptor-1), a soluble protein that binds with VEGF and inactivates its function. The production of VEGF by macrophages is regulated by HIF-1α (hypoxia inducible factor-1α), and the production of sVEGFR-1 is mediated by HIF-2α. Recent experiments measured the effect of inhibiting tumor growth by GM-CSF treatment in mice with HIF-1α-deficient or HIF-2α-deficient macrophages. In the present paper, we represent these experiments by a mathematical model based on a system of partial differential equations. We show that the model simulations agree with the above experiments. The model can then be used to suggest strategies for inhibiting tumor growth. For example, the model qualitatively predicts the extent to which GM-CSF treatment in combination with a small molecule inhibitor that stabilizes HIF-2α will reduce tumor volume and angiogenesis.
doi:10.1007/s11538-012-9776-3
PMCID: PMC3936579  PMID: 23073704
Free boundary model; Tumor growth
3.  Epigenetic Regulation of miR-17∼92 Contributes to the Pathogenesis of Pulmonary Fibrosis 
Rationale: Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung fibrosis with a high mortality rate. In organ repair and remodeling, epigenetic events are important. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and can target epigenetic molecules important in DNA methylation. The miR-17∼92 miRNA cluster is critical for lung development and lung epithelial cell homeostasis and is predicted to target fibrotic genes and DNA methyltransferase (DNMT)-1 expression.
Objectives: We investigated the miR-17∼92 cluster expression and its role in regulating DNA methylation events in IPF lung tissue.
Methods: Expression and DNA methylation patterns of miR-17∼92 were determined in human IPF lung tissue and fibroblasts and fibrotic mouse lung tissue. The relationship between the miR-17∼92 cluster and DNMT-1 expression was examined in vitro. Using a murine model of pulmonary fibrosis, we examined the therapeutic potential of the demethylating agent, 5′-aza-2′-deoxycytidine.
Measurements and Main Results: Compared with control samples, miR-17∼92 expression was reduced in lung biopsies and lung fibroblasts from patients with IPF, whereas DNMT-1 expression and methylation of the miR-17∼92 promoter was increased. Several miRNAs from the miR-17∼92 cluster targeted DNMT-1 expression resulting in a negative feedback loop. Similarly, miR-17∼92 expression was reduced in the lungs of bleomycin-treated mice. Treatment with 5′-aza-2′-deoxycytidine in a murine bleomycin-induced pulmonary fibrosis model reduced fibrotic gene and DNMT-1 expression, enhanced miR-17∼92 cluster expression, and attenuated pulmonary fibrosis.
Conclusions: This study provides insight into the pathobiology of IPF and identifies a novel epigenetic feedback loop between miR-17∼92 and DNMT-1 in lung fibrosis.
doi:10.1164/rccm.201205-0888OC
PMCID: PMC3603596  PMID: 23306545
microRNA; miR-17∼92; pulmonary fibrosis; DNA methylation; DNMT-1
4.  Thiol-redox antioxidants protect against lung vascular endothelial cytoskeletal alterations caused by pulmonary fibrosis inducer, bleomycin: comparison between classical thiol-protectant, N-acetyl-l-cysteine, and novel thiol antioxidant, N,N′-bis-2-mercaptoethyl isophthalamide 
Toxicology mechanisms and methods  2012;22(5):383-396.
Lung vascular alterations and pulmonary hypertension associated with oxidative stress have been reported to be involved in idiopathic lung fibrosis (ILF). Therefore, here, we hypothesize that the widely used lung fibrosis inducer, bleomycin, would cause cytoskeletal rearrangement through thiol-redox alterations in the cultured lung vascular endothelial cell (EC) monolayers. We exposed the monolayers of primary bovine pulmonary artery ECs to bleomycin (10 µg) and studied the cytotoxicity, cytoskeletal rearrangements, and the macromolecule (fluorescein isothiocyanate-dextran, 70,000 mol. wt.) paracellular transport in the absence and presence of two thiol-redox protectants, the classic water-soluble N-acetyl-l-cysteine (NAC) and the novel hydrophobic N,N′-bis-2-mercaptoethyl isophthalamide (NBMI). Our results revealed that bleomycin induced cytotoxicity (lactate dehydrogenase leak), morphological alterations (rounding of cells and filipodia formation), and cytoskeletal rearrangement (actin stress fiber formation and alterations of tight junction proteins, ZO-1 and occludin) in a dose-dependent fashion. Furthermore, our study demonstrated the formation of reactive oxygen species, loss of thiols (glutathione, GSH), EC barrier dysfunction (decrease of transendothelial electrical resistance), and enhanced paracellular transport (leak) of macromolecules. The observed bleomycin-induced EC alterations were attenuated by both NAC and NBMI, revealing that the novel hydrophobic thiol-protectant, NBMI, was more effective at µM concentrations as compared to the water-soluble NAC that was effective at mM concentrations in offering protection against the bleomycin-induced EC alterations. Overall, the results of the current study suggested the central role of thiol-redox in vascular EC dysfunction associated with ILF.
doi:10.3109/15376516.2012.673089
PMCID: PMC3914546  PMID: 22409285
Cytoskeletal rearrangement; endothelial barrier function; interstitial pulmonary fibrosis; lung vascular endothelial cell; oxidative stress; thiol-redox
5.  Organ-derived coatings on electrospun nanofibers as ex vivo microenvironments 
Biomaterials  2010;32(2):538-546.
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring. Collagen deposition, myofibroblast expansion, and the development of fibroblastic foci are the hallmark pathological events. The origin and mechanism of recruitment of myofibroblasts, the key cell contributing to these events, is unknown. We hypothesize that the fibrotic lung microenvironment causes differentiation of arriving bone marrow-derived cells into myofibroblasts. Therefore, a method of isolating the effects of fibrotic microenvironment components on various cell types was developed. Electrospun nanofibers were coated with lung extracts from fibrotic or nonfibrotic mice and used to determine effects on bone marrow cells from naïve mice. Varying moduli nanofibers were also employed to determine matrix stiffness effects on these cells. At structured time points, bone marrow cell morphology was recorded and changes in fibrotic gene expression determined by real-time PCR. Cells plated on extracts isolated from fibrotic murine lungs secreted larger amounts of extracellular matrix, adopted a fibroblastic morphology, and exhibited increased myofibroblast gene expression after 8 and 14 days; cells plated on extracts from nonfibrotic lungs did not. Similar results were observed when the nanofiber modulus was increased. This ex vivo system appears to recapitulate the three-dimensional fibrotic lung microenvironment.
doi:10.1016/j.biomaterials.2010.08.104
PMCID: PMC3671867  PMID: 20875916
Fibrosis; ECM; Electrospinning; Polycaprolactone; Fibroblast; Three-dimensional cell culture
6.  Chronic Restraint Stress Upregulates Erythropoiesis through Glucocorticoid Stimulation 
PLoS ONE  2013;8(10):e77935.
In response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce large numbers of young erythrocytes. Previous work demonstrates hematopoietic changes in rodents exposed to various physical and psychological stressors, however, the effects of chronic psychological stress on erythropoiesis has not be delineated. We employed laboratory, clinical and genomic analyses of a murine model of chronic restraint stress (RST) to examine the influence of psychological stress on erythropoiesis. Mice exposed to RST demonstrated markers of early erythroid expansion involving the glucocorticoid receptor. In addition, these RST-exposed mice had increased numbers of circulating reticulocytes and increased erythropoiesis in primary and secondary erythroid tissues. Mice also showed increases in erythroid progenitor populations and elevated expression of the erythroid transcription factor KLF1 in these cells. Together this work reports some of the first evidence of psychological stress affecting erythroid homeostasis through glucocorticoid stimulation.
doi:10.1371/journal.pone.0077935
PMCID: PMC3799740  PMID: 24205034
7.  The Role of the NADPH Oxidase Complex, p38 MAPK, and Akt in Regulating Human Monocyte/Macrophage Survival 
M-CSF induces PI 3-kinase activation, resulting in reactive oxygen species (ROS) production. Previously, we reported that ROS mediate macrophage colony-stimulating factor (M-CSF)–induced extracellular regulated kinase (Erk) activation and monocyte survival. In this work, we hypothesized that M-CSF–stimulated ROS products modulated Akt1 and p38 activation. Furthermore, we sought to clarify the source of these ROS and the role of ROS and Akt in monocyte/macrophage survival. Macrophages from p47phox−/− mice, lacking a key component of the NADPH oxidase complex required for ROS generation, had reduced cell survival and Akt1 and p38 mitogen-activated protein kinase (MAPK) phosphorylation compared with wild-type macrophages in response to M-CSF stimulation, but had no difference in M-CSF–stimulated Erk. To understand how ROS affected monocyte survival and signaling, we observed that NAC and DPI decreased cell survival and Akt1 and p38 MAPK phosphorylation. Using bone marrow–derived macrophages from mice expressing constitutively activated Akt1 (Myr-Akt1) or transfecting Myr-Akt1 constructs into human peripheral monocytes, we concluded that Akt is a positive regulator of monocyte survival. Moreover, the p38 MAPK inhibitor, SB203580, inhibited p38 activity and M-CSF–induced monocyte survival. These findings demonstrate that ROS generated from the NADPH oxidase complex contribute to monocyte/macrophage survival induced by M-CSF via regulation of Akt and p38 MAPK.
doi:10.1165/rcmb.2006-0165OC
PMCID: PMC1899309  PMID: 16931806
Akt; macrophage/monocyte; p47phox; p38 MAP; ROS
8.  Stabilization of HIF-2α induces sVEGFR-1 production from tumor-associated macrophages and decreases tumor growth in a murine melanoma model1 
Macrophage secretion of VEGF in response to hypoxia contributes to tumor growth and angiogenesis. In addition to VEGF, hypoxic macrophages stimulated with GM-CSF secrete high levels of a soluble form of the VEGF receptor (sVEGFR-1), which neutralizes VEGF and inhibits its biological activity. Using mice with a monocyte/macrophage-selective deletion of HIF-1α or HIF-2α, we recently demonstrated that the anti-tumor response to GM-CSF was dependent on HIF-2α-driven sVEGFR-1 production by tumor-associated macrophages, while HIF-1α specifically regulated VEGF production. We therefore hypothesized that chemical stabilization of HIF-2α using an inhibitor of prolyl hydroxylase 3 (PHD3; an upstream inhibitor of HIF-2α activation) would increase sVEGFR-1 production from GM-CSF-stimulated macrophages. Treatment of macrophages with the PHD3 inhibitor AKB-6899 stabilized HIF-2α and increased sVEGFR-1 production from GM-CSF-treated macrophages, with no effect on HIF-1α accumulation or VEGF production. Treatment of B16F10 melanoma-bearing mice with GM-CSF and AKB-6899 significantly reduced tumor growth compared to either drug alone. Increased levels of sVEGFR-1 mRNA, but not VEGF mRNA, were detected within the tumors of GM-CSF- and AKB-6899-treated mice, correlating with decreased tumor vascularity. Finally, the anti-tumor and anti-angiogenic effects of AKB-6899 were abrogated when mice were simultaneously treated with a sVEGFR-1 neutralizing antibody. These results demonstrate that AKB-6899 decreases tumor growth and angiogenesis in response to GM-CSF by increasing sVEGFR-1 production from tumor-associated macrophages. Specific activation of HIF-2α can therefore decrease tumor growth and angiogenesis.
doi:10.4049/jimmunol.1103817
PMCID: PMC3436995  PMID: 22869907
9.  In Vivo Monitoring of pH, Redox Status, and Glutathione Using L-Band EPR for Assessment of Therapeutic Effectiveness in Solid Tumors 
Magnetic Resonance in Medicine  2011;67(6):1827-1836.
Approach for in vivo real-time assessment of tumor tissue extracellular pH (pHe), redox, and intracellular glutathione based on L-band EPR spectroscopy using dual function pH and redox nitroxide probe and disulfide nitroxide biradical, is described. These parameters were monitored in PyMT mice bearing breast cancer tumors during treatment with granulocyte macrophage colony-stimulating factor. It was observed that tumor pHe is about 0.4 pH units lower than that in normal mammary gland tissue. Treatment with granulocyte macrophage colony-stimulating factor decreased the value of pHe by 0.3 units compared with PBS control treatment. Tumor tissue reducing capacity and intracellular glutathione were elevated compared with normal mammary gland tissue. Granulocyte macrophage colony-stimulating factor treatment resulted in a decrease of the tumor tissue reducing capacity and intracellular glutathione content. In addition to spectroscopic studies, pHe mapping was performed using recently proposed variable frequency proton–electron double-resonance imaging. The pH mapping superimposed with MRI image supports probe localization in mammary gland/tumor tissue, shows high heterogeneity of tumor tissue pHe and a difference of about 0.4 pH units between average pHe values in tumor and normal mammary gland. In summary, the developed multifunctional approach allows for in vivo, noninvasive pHe, extracellular redox, and intracellular glutathione content monitoring during investigation of various therapeutic strategies for solid tumors. Magn Reson Med 000:000–000, 2011.
doi:10.1002/mrm.23196
PMCID: PMC3305854  PMID: 22113626
solid tumors; bitroxides; glutathione; redox status; pH; L-Band EPR; PyMT mice; mammary gland; in vivo
10.  Program in pharmacogenomics at the Ohio State University Medical Center 
Pharmacogenomics  2012;13(7):751-756.
Established in 2002, the Ohio State University Medical Center Program in Pharmacogenomics, lead by Wolfgang Sadee, is comprised of nearly 50 members dedicated to the discovery, investigation and translation of genetic biomarkers with the primary goal of advancing personalized healthcare. This article describes the research teams, bioinformatics infrastructure, supporting laboratories and Centers for Personalized Healthcare and for Clinical and Translational Science, current molecular genetic studies, translational and clinical pharmacogenomic studies, examples of biomarkers under development, and the future directions of the program.
doi:10.2217/pgs.12.46
PMCID: PMC3650730  PMID: 22594506
11.  Pulmonary Fibrosis Inducer, Bleomycin, Causes Redox-Sensitive Activation of Phospholipase D and Cytotoxicity Through Formation of Bioactive Lipid Signal Mediator, Phosphatidic Acid, in Lung Microvascular Endothelial Cells 
The mechanisms of lung microvascular complications and pulmonary hypertension known to be associated with idiopathic pulmonary fibrosis (IPF), a debilitating lung disease, are not known. Therefore, we investigated whether bleomycin, the widely used experimental IPF inducer, would be capable of activating phospholipase D (PLD) and generating the bioactive lipid signal-mediator phosphatidic acid (PA) in our established bovine lung microvascular endothelial cell (BLMVEC) model. Our results revealed that bleomycin induced the activation of PLD and generation of PA in a dose-dependent (5, 10, and 100 μg) and time-dependent (2-12 hours) fashion that were significantly attenuated by the PLD-specific inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI). PLD activation and PA generation induced by bleomycin (5 μg) were significantly attenuated by the thiol protectant (N-acetyl-L-cysteine), antioxidants, and iron chelators suggesting the role of reactive oxygen species (ROS), lipid peroxidation, and iron therein. Furthermore, our study demonstrated the formation of ROS and loss of glutathione (GSH) in cells following bleomycin treatment, confirming oxidative stress as a key player in the bleomycin-induced PLD activation and PA generation in ECs. More noticeably, PLD activation and PA generation were observed to happen upstream of bleomycin-induced cytotoxicity in BLMVECs, which was protected by FIPI. This was also supported by our current findings that exposure of cells to exogenous PA led to internalization of PA and cytotoxicity in BLMVECs. For the first time, this study revealed novel mechanism of the bleomycin-induced redox-sensitive activation of PLD that led to the generation of PA, which was capable of inducing lung EC cytotoxicity, thus suggesting possible bioactive lipid-signaling mechanism/mechanisms of microvascular disorders encountered in IPF.
doi:10.1177/1091581810388850
PMCID: PMC3503147  PMID: 21131602
bioactive lipid signaling; interstitial pulmonary fibrosis; lung microvascular endothelial cell; oxidative stress; phosphatidic acid; phospholipase D; thiol redox
12.  Transcription Factor ets-2 Plays an Important Role in the Pathogenesis of Pulmonary Fibrosis 
Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α–smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-β, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation.
doi:10.1165/rcmb.2010-0490OC
PMCID: PMC3262682  PMID: 21562315
ets-2; Type I collagen; pulmonary fibrosis; bleomycin; fibroblast
13.  The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis 
Modern Pathology  2011;25(3):416-433.
We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68+ and CD80+ cells, and significantly fewer CD3+, CD4+, and CD45RO+ cells in areas of relatively (histologically) normal lung in biopsies from idiopathic pulmonary fibrosis patients compared to controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, CCR6, S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared to histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3+ T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors, and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for Foxp3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating epithelial cells appear to propagate inflammation. The regenerative mechanisms become skewed to ultimately result in lethal, fibrotic restriction of lung function.
doi:10.1038/modpathol.2011.166
PMCID: PMC3270219  PMID: 22037258
Idiopathic pulmonary fibrosis; co-expression analysis; immunohistochemistry; inflammation; IL-17; retinoic acid-related orphan receptors; usual interstitial pneumonia
14.  HIF-2α regulates GM-CSF-derived sVEGFR-1 production from macrophages and inhibits tumor growth and angiogenesis1 
Macrophage secretion of VEGF in response to the hypoxic tumor microenvironment contributes to tumor growth, angiogenesis, and metastasis. We have recently demonstrated that macrophages stimulated with GM-CSF at low O2 secrete high levels of a soluble form of the VEGF receptor (sVEGFR-1), which neutralizes VEGF and inhibits its biological activity. Using siRNA targeting to deplete HIF-1α or HIF-2α in murine macrophages, we found that macrophage production of sVEGFR-1 in response to low O2 was dependent on HIF-2α, while HIF-1α specifically regulated VEGF production. In our current report, we evaluated the growth of B16F10 malignant melanoma in mice with a monocyte/macrophage-selective deletion of HIF-1α or HIF-2α (HIF-1αflox/flox-or HIF-2αflox/+/LysMcre mice). GM-CSF treatment increased intra-tumoral VEGF and sVEGFR-1 in control mice, an effect that was associated with a decrease in microvessel density. GM-CSF treatment of HIF-1αflox/flox/LysMcre mice induced sVEGFR-1 but not VEGF, resulting in an overall greater reduction in tumor growth and angiogenesis compared to control mice. In addition, real-time PCR for melanoma-specific genes revealed a significantly reduced presence of lung micrometastases in HIF-1αflox/flox/LysMcre mice treated with GM-CSF. Conversely, GM-CSF treatment induced VEGF but not sVEGFR-1 in HIF-2αflox/+/LysMcre mice, and correspondingly, GM-CSF did not decrease tumor growth, angiogenesis, or lung metastasis in these mice. This study reveals opposing roles for the HIFs in the regulation of angiogenesis by tumor-associated macrophages, and suggests that administration of GM-CSF might be an effective means of inducing sVEGFR-1 and inhibiting tumor growth and angiogenesis in patients with melanoma.
doi:10.4049/jimmunol.1100841
PMCID: PMC3150377  PMID: 21765015
15.  Towards a “4I” approach to personalized healthcare 
Personalized healthcare holds the promise of ensuring that every patient receives optimal wellness promotion and clinical care based upon his or her unique and multi-factorial phenotype, informed by the most up-to-date and contextually relevant science. However, achieving this vision requires the management, analysis, and delivery of complex data, information, and knowledge. While there are well-established frameworks that serve to inform the pursuit of basic science, clinical, and translational research in support of the operationalization of the personalized healthcare paradigm, equivalent constructs that may enable biomedical informatics innovation and practice aligned with such objectives are noticeably sparse. In response to this gap in knowledge, we propose such a framework for the advancement of biomedical informatics in order to address the fundamental information needs of the personalized healthcare domain. This framework, which we refer to as a “4I” approach, emphasizes the pursuit of research and practice that is information-centric, integrative, interactive, and innovative.
doi:10.1186/2001-1326-1-14
PMCID: PMC3560982  PMID: 23369359
Individualized Medicine; Informatics; Organization & Administration
16.  Mesenchymal Stem Cells for Cardiac Regeneration: Translation to Bedside Reality 
Stem Cells International  2012;2012:646038.
Cardiovascular disease (CVD) is the leading cause of death worldwide. According to the World Health Organization (WHO), an estimate of 17.3 million people died from CVDs in 2008 and by 2030, the number of deaths is estimated to reach almost 23.6 million. Despite the development of a variety of treatment options, heart failure management has failed to inhibit myocardial scar formation and replace the lost cardiomyocyte mass with new functional contractile cells. This shortage is complicated by the limited ability of the heart for self-regeneration. Accordingly, novel management approaches have been introduced into the field of cardiovascular research, leading to the evolution of gene- and cell-based therapies. Stem cell-based therapy (aka, cardiomyoplasty) is a rapidly growing alternative for regenerating the damaged myocardium and attenuating ischemic heart disease. However, the optimal cell type to achieve this goal has not been established yet, even after a decade of cardiovascular stem cell research. Mesenchymal stem cells (MSCs) in particular have been extensively investigated as a potential therapeutic approach for cardiac regeneration, due to their distinctive characteristics. In this paper, we focus on the therapeutic applications of MSCs and their transition from the experimental benchside to the clinical bedside.
doi:10.1155/2012/646038
PMCID: PMC3382381  PMID: 22754578
17.  Thrombospondin-1–Deficient Mice Are Not Protected from Bleomycin-Induced Pulmonary Fibrosis 
Thrombospondin-1 (TSP-1) is an extracellular protein critical to normal lung homeostasis, and is reported to activate latent transforming growth factor-β (TGF-β). Because active TGF-β is causally involved in lung fibrosis after bleomycin challenge, alterations in TSP-1 may be relevant to pulmonary fibrosis. We sought to determine the effects of TSP-1 deficiency on the susceptibility to bleomycin-induced pulmonary fibrosis in a murine model. Age-matched and sex-matched C57BL/6 wild-type (WT) and TSP-1–deficient mice were treated twice weekly for 4 weeks with intraperitoneal bleomycin (0.035 U/g) or PBS, and were allowed to rest 1 week before being killed. Their lungs were inflated with PBS, fixed in formalin, paraffin-embedded, and sectioned. A certified veterinary pathologist blindly scored each slide for inflammation and fibrosis. Lungs were homogenized to obtain RNA and protein for the real-time RT-PCR analysis of connective tissue growth factor (CTGF) and collagen I, and for Western blotting to detect phospho-Smad2, or total Smad2/3, respectively. In response to bleomycin treatment, measures of fibrosis and inflammation, along with CTGF and collagen I mRNA concentrations, were increased in TSP-1–deficient mice compared with WT mice. Notably, Smad 2/3 signaling was of equal strength in WT and TSP-1 knockout mice treated with bleomycin, suggesting that TSP-1 is not required for the activation of TGF-β. These results demonstrate that TSP-1 deficiency does not protect mice from systemic bleomycin challenge, and that TSP-1 deficiency is associated with increased expression of lung collagen and CTGF.
doi:10.1165/rcmb.2009-0019OC
PMCID: PMC3095927  PMID: 20581099
TSP-1; pulmonary fibrosis; TGF-β; bleomycin
18.  Identifying Common Genes and Networks in Multi-Organ Fibrosis 
Fibroproliferative diseases of organs are poorly understood and generally lack effective anti-fibrotic treatments. Our goal was to identify the key regulatory factors in pathologic fibrosis, common between organ-based fibrotic disease. We analyzed 9 microarray datasets publicly available in the GEO datasets from lung, heart, liver and kidney fibrotic disease tissue (489 microarrays total, disease and control). We identified a set of 90 genes differentially expressed in at least five microarray datasets. We used IPA and DAVID analysis to identify gene networks and their molecular functions. A mutual information based network work activity analysis showed that a connective tissue disorders network was the most active for all types of fibrosis included in this analysis. Conclusion: Our analysis indicates that despite different disease manifestation, organ fibrosis share a specific set of genes suggesting the potential for a common origin.
PMCID: PMC3392050  PMID: 22779061
19.  Glucose variability and mortality in patients with sepsis* 
Critical care medicine  2008;36(8):2316-2321.
Objective
Treatment and prevention of hyperglycemia has been advocated for subjects with sepsis. Glucose variability, rather than the glucose level, has also been shown to be an important factor associated with in-hospital mortality, in general, critically ill patients. Our objective was to determine the association between glucose variability and hospital mortality in septic patients and the expression of glucose variability that best reflects this risk.
Design
Retrospective, single-center cohort study.
Setting
Academic, tertiary care hospital.
Patients
Adult subjects hospitalized for >1 day, with a diagnosis of sepsis were included.
Interventions
None.
Measurements
Glucose variability was calculated for all subjects as the average and standard deviation of glucose, the mean amplitude of glycemic excursions, and the glycemic lability index. Hospital mortality was the primary outcome variable. Logistic regression was used to determine the odds of hospital death in relation to measures of glucose variability after adjustment for important covariates.
Main results
Of the methods used to measure glucose variability, the glycemic lability index had the best discrimination for mortality (area under the curve = 0.67, p < 0.001). After adjustment for confounders, including the number of organ failures and the occurrence of hypoglycemia, there was a significant interaction between glycemic lability index and average glucose level, and the odds of hospital mortality. Higher glycemic lability index was not independently associated with mortality among subjects with average glucose levels above the median for the cohort. However, subjects with increased glycemic lability index, but lower average glucose values had almost five-fold increased odds of hospital mortality (odds ratio = 4.73, 95% confidence interval = 2.6 – 8.7) compared with those with lower glycemic lability index.
Conclusions
Glucose variability is independently associated with hospital mortality in septic patients. Strategies to reduce glucose variability should be studied to determine whether they improve the outcomes of septic patients.
doi:10.1097/CCM.0b013e3181810378
PMCID: PMC3176449  PMID: 18596625
sepsis; hyperglycemia; insulin therapy; mortality
20.  An In Silico Modeling Approach to Understanding the Dynamics of Sarcoidosis 
PLoS ONE  2011;6(5):e19544.
Background
Sarcoidosis is a polygenic disease with diverse phenotypic presentations characterized by an abnormal antigen-mediated Th1 type immune response. At present, progress towards understanding sarcoidosis disease mechanisms and the development of novel treatments is limited by constraints attendant to conducting human research in a rare disease in the absence of relevant animal models. We sought to develop a computational model to enhance our understanding of the pathological mechanisms of and predict potential treatments of sarcoidosis.
Methodology/Results
Based upon the literature, we developed a computational model of known interactions between essential immune cells (antigen-presenting macrophages, effector and regulatory T cells) and cytokine mediators (IL-2, TNFα, IFNγ) of granulomatous inflammation during sarcoidosis. The dynamics of these interactions are described by a set of ordinary differential equations. The model predicts bistable switching behavior which is consistent with normal (self-limited) and “sarcoidosis-like” (sustained) activation of the inflammatory components of the system following a single antigen challenge. By perturbing the influence of model components using inhibitors of the cytokine mediators, distinct clinically relevant disease phenotypes were represented. Finally, the model was shown to be useful for pre-clinical testing of therapies based upon molecular targets and dose-effect relationships.
Conclusions/Significance
Our work illustrates a dynamic computer simulation of granulomatous inflammation scenarios that is useful for the investigation of disease mechanisms and for pre-clinical therapeutic testing. In lieu of relevant in vitro or animal surrogates, our model may provide for the screening of potential therapies for specific sarcoidosis disease phenotypes in advance of expensive clinical trials.
doi:10.1371/journal.pone.0019544
PMCID: PMC3103504  PMID: 21637752
21.  Thrombospondin-1 Contributes to Mortality in Murine Sepsis through Effects on Innate Immunity 
PLoS ONE  2011;6(5):e19654.
Background
Thrombospondin-1 (TSP-1) is involved in many biological processes, including immune and tissue injury response, but its role in sepsis is unknown. Cell surface expression of TSP-1 on platelets is increased in sepsis and could activate the anti-inflammatory cytokine transforming growth factor beta (TGFβ1) affecting outcome. Because of these observations we sought to determine the importance of TSP-1 in sepsis.
Methodology/Principal Findings
We performed studies on TSP-1 null and wild type (WT) C57BL/6J mice to determine the importance of TSP-1 in sepsis. We utilized the cecal ligation puncture (CLP) and intraperitoneal E.coli injection (IP E.coli) models of peritoneal sepsis. Additionally, bone-marrow-derived macrophages (BMMs) were used to determine phagocytic activity. TSP-1−/− animals experienced lower mortality than WT mice after CLP. Tissue and peritoneal lavage TGFβ1 levels were unchanged between animals of each genotype. In addition, there is no difference between the levels of major innate cytokines between the two groups of animals. PLF from WT mice contained a greater bacterial load than TSP-1−/− mice after CLP. The survival advantage for TSP-1−/− animals persisted when IP E.coli injections were performed. TSP-1−/− BMMs had increased phagocytic capacity compared to WT.
Conclusions
TSP-1 deficiency was protective in two murine models of peritoneal sepsis, independent of TGFβ1 activation. Our studies suggest TSP-1 expression is associated with decreased phagocytosis and possibly bacterial clearance, leading to increased peritoneal inflammation and mortality in WT mice. These data support the contention that TSP-1 should be more fully explored in the human condition.
doi:10.1371/journal.pone.0019654
PMCID: PMC3090410  PMID: 21573017
22.  Reciprocal regulation of activating and inhibitory Fcγ receptors by TLR7/8 activation: Implications for tumor immunotherapy 
Purpose
Activation of Toll-like Receptors (TLR) 7 and 8 by engineered agonists has been shown to aid in combating viruses and tumors. Here, we wished to test the effect of TLR7/8 activation on monocyte Fcγ receptor (FcγR) function, as they are critical mediators of antibody therapy.
Experimental Design
The effect of the TLR7/8 agonist R-848 on cytokine production and antibody-dependent cellular cytotoxicity (ADCC) by human peripheral blood monocytes (PBM) was tested. Affymetrix microarrays were done to examine genomewide transcriptional responses of monocytes to R-848, and Western blots were done to measure protein levels of FcγR. Murine bone marrow-derived macrophages (BMM) from wild-type and knockout mice were examined to determine the downstream pathway involved with regulating FcγR expression. The efficacy of R-848 as an adjuvant for antibody therapy was tested using a CT26-HER2/neu solid tumor model.
Results
Overnight incubation with R-848 increased FcγR-mediated cytokine production and ADCC in human PBM. Expression of FcγRI, FcγRIIa and the common γ-subunit was increased. Surprisingly, expression of the inhibitory FcγRIIb was almost completely abolished. In BMM, this required TLR7 and MyD88, as R-848 did not increase expression of the γ-subunit in TLR7−/− nor MyD88−/− cells. In a mouse solid tumor model, R-848 treatment superadditively enhanced the effects of antitumor antibody.
Conclusions
These results demonstrate an as-yet undiscovered regulatory and functional link between the TLR7/8 and FcγR pathways. This suggests that TLR7/8 agonists may be especially beneficial during antibody therapy.
doi:10.1158/1078-0432.CCR-09-2591
PMCID: PMC2848878  PMID: 20332325
Toll-like receptor; Fc-gamma receptor; immunotherapy; antibody; tumor
23.  Social disruption induces lung inflammation 
Brain, behavior, and immunity  2009;24(3):394-402.
Social disruption (SDR) is a well-characterized mouse stressor that causes changes in immune cell reactivity in response to inflammatory stimuli. In this study, we found that SDR in the absence of an immune challenge induced pulmonary inflammation and increased pulmonary myeloperoxidase activity. The percentage of neutrophils within the lungs increased 2-fold after social disruption. Monocyte accumulation in the lungs was also significantly increased. In addition, SDR increased the percentage of neutrophils that expressed CD11b, indicating that more neutrophils were in an activated state. In the lungs, we observed an increased level of the inflammatory cytokine, IL-1β, as well as higher levels of KC/CXCL1, MIP2/CXCL2, and MCP-1/CCL2, which are chemokines responsible for neutrophil and monocyte recruitment. Furthermore, social disruption led to increased lung expression of the adhesion molecules P-selectin, E-selectin, and ICAM-1, which localize and recruit immune cells. These data support previous findings of an inflammatory environment induced by SDR. We demonstrate that this effect also occurs in the pulmonary milieu and in the absence of an inflammatory stimulus.
doi:10.1016/j.bbi.2009.10.019
PMCID: PMC2826531  PMID: 19903521
Innate immunity; social stress; psychoneuroimmunology; lung; inflammation; Social disruption (SDR)
24.  Asc-Dependent and Independent Mechanisms Contribute to Restriction of Legionella Pneumophila Infection in Murine Macrophages 
The apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc) is an adaptor molecule that mediates inflammatory and apoptotic signals. Legionella pneumophila is an intracellular bacterium and the causative agent of Legionnaire's pneumonia. L. pneumophila is able to cause pneumonia in immuno-compromised humans but not in most inbred mice. Murine macrophages that lack the ability to activate caspase-1, such as caspase-1−/− and Nlrc4−/− allow L. pneumophila infection. This permissiveness is attributed mainly to the lack of active caspase-1 and the absence of its down stream substrates such as caspase-7. However, the role of Asc in control of L. pneumophila infection in mice is unclear. Here we show that caspase-1 is moderately activated in Asc−/− macrophages and that this limited activation is required and sufficient to restrict L. pneumophila growth. Moreover, Asc-independent activation of caspase-1 requires bacterial flagellin and is mainly detected in cellular extracts but not in culture supernatants. We also demonstrate that the depletion of Asc from permissive macrophages enhances bacterial growth by promoting L. pneumophila-mediated activation of the NF-κB pathway and decreasing caspase-3 activation. Taken together, our data demonstrate that L. pneumophila infection in murine macrophages is controlled by several mechanisms: Asc-independent activation of caspase-1 and Asc-dependent regulation of NF-κB and caspase-3 activation.
doi:10.3389/fmicb.2011.00018
PMCID: PMC3112328  PMID: 21713115
inflammasome; caspase-1; Legionella pneumophila; Asc
25.  Personalized healthcare in clotting disorders 
Personalized medicine  2010;7(1):65-73.
In terms of managing thrombotic disorders, genotype-based individualized patient care emerged as early as 1994 when the association of factor V Leiden (G1691A), and later, prothrombin (G20210A), with thrombotic phenotypes were discovered. Since then, genetic tests for specific thrombophilic SNPs have been routinely incorporated into daily practices in both thrombotic risk assessment and clinical decision-making with respect to prophylactic anti-thrombotic therapy. Recently, the area of pharmacogenomics in major anti-thrombotic drugs, such as warfarin and clopidogrel, has been the principal driver for personalized therapy based on one’s own individual characteristics.
doi:10.2217/pme.09.67
PMCID: PMC2824443  PMID: 20174595
anticoagulant; antiplatelet; clopidogrel; clotting; pharmacogenomics; SNP; warfarin

Results 1-25 (53)