PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  NPY and NPY Receptors in Airway Structural and Inflammatory Cells in Allergic Asthma 
Purpose
Neuropeptide Y (NPY) level is elevated in allergic asthmatic airways and activation of NPY receptor-1 (NPY-Y1) on antigen presenting cells (APCs) is essential for T-cell priming. Paradoxically, NPY-Y1 modulates hyper-responsiveness in T cells, suggesting a bimodal role for NPY in APCs and T-cells. Therefore, determination of the temporal and spatial expression pattern of NPY and its receptors in asthmatic airways is essential to further understand the role of NPY in allergic asthma.
Methods
Lungs were isolated from control and acute and chronic stages of OVA-sensitized and challenged mice (OVA). Stains, including H&E, PAS, and trichrome, were used to determine the severity of lung pathology. The expression patterns of NPY and NPY-Y receptors in the airways were determined using ELISA and immunofluorescence. Cytokine levels in the BALF were also measured.
Results
NPY levels were undetectable in the BALF of control mice, but significantly increased in the OVA group at day 80. Levels of IL-4, TGF-β1 and TGF-β2, significantly increased and peaked on day 45 and decreased on day 80 in the OVA group, exhibiting an inverse correlation with NPY levels. NPY expression was localized to macrophage-like cells in the peri-bronchial and peri-vascular areas in the lung tissue. NPY-Y1 and -Y5 receptors were constitutively expressed by both structural and inflammatory cells in the lung tissue.
Conclusions
NPY produced by activated macrophage-like cells may be involved in regulating cytokine production and cellular activities of immune cells in asthma. However, it remains unclear whether such an increase in NPY is a defensive/compensatory mechanism to modulate the effects of inflammatory cytokines.
doi:10.1016/j.yexmp.2012.05.009
PMCID: PMC3488603  PMID: 22705097
Allergic asthma; antigen presenting cells (APCs); macrophage; neuropeptide Y (NPY); NPY receptor-Y1; transforming growth factor beta (TGF-β)
2.  Successful Transfection of Genes Using AAV-2/9 Vector in Swine Coronary and Peripheral Arteries 
The Journal of Surgical Research  2011;175(1):169-175.
Background
Gene therapy has attracted attention for its potential to treat several cardiovascular diseases. The use of adeno-associated viral (AAV) vectors to facilitate therapeutic gene transfer to suppress intimal hyperplasia is a promising concept. The objective of this study was to analyze the in vivo transduction of a novel recombinant AAV-2/9 vector with SM22α promoter, containing β-galactosidase gene (Lac Z) or green fluorescent protein (GFP) as reporter genes, to the medial layer smooth muscle cells (SMCs) of swine coronary and peripheral arteries.
Methods
The AAV2/9 vector containing SM22α (1×1013 pfu) were administered into carotid/femoral/coronary arteries of domestic swine using irrigating balloon catheter-based gene delivery. Following gene transfer, cryosections of arteries were processed for X-Gal and GFP analysis. Fluorescence microscopy and Western blotting were done to analyze the GFP expression in the SMCs.
Results
LacZ mRNA expression was visualized in the medial layer 7 days after vector administration. The GFP expression was detected at 7th day and lasted for at least 2 months showing the longer-lasting expression of the AAV2/9-vector. Control arteries did not show any expression of GFP or LacZ. There was no significant effect of AAV2/9 viral transduction on serum amylase, fibrinogen and serum CRP levels.
Conclusion
These finding support the use of AAV2/9 as a vector to effectively transduce a gene in SMCs of coronary and peripheral arteries without causing inflammation.
doi:10.1016/j.jss.2011.02.032
PMCID: PMC3150285  PMID: 21529824
Adeno-associated virus; Gene therapy; Intimal hyperplasia; Restenosis; Vascular smooth muscle cells; Vector
3.  Calcium-Activated Potassium Channel KCa3.1 in Lung Dendritic Cell Migration 
Migration to draining lymph nodes is a critical requirement for dendritic cells (DCs) to control T-cell–mediated immunity. The calcium-activated potassium channel KCa3.1 has been shown to be involved in regulating cell migration in multiple cell types. In this study, KCa3.1 expression and its functional role in lung DC migration were examined. Fluorescence-labeled antigen was intranasally delivered into mouse lungs to label lung Ag-carrying DCs. Lung CD11chighCD11blow and CD11clowCD11bhigh DCs from PBS-treated and ovalbumin (OVA)-sensitized mice were sorted using MACS and FACS. Indo-1 and DiBAC4(3) were used to measure intracellular Ca2+ and membrane potential, respectively. The mRNA expression of KCa3.1 was examined using real-time PCR. Expression of KCa3.1 protein and CCR7 was measured using flow cytometry. Migration of two lung DC subsets to lymphatic chemokines was examined using TransWell in the absence or presence of the KCa3.1 blocker TRAM-34. OVA sensitization up-regulated mRNA and protein expression of KCa3.1 in lung DCs, with a greater response by the CD11chighCD11blow than CD11clowCD11bhigh DCs. Although KCa3.1 expression in Ag-carrying DCs was higher than that in non–Ag-carrying DCs in OVA-sensitized mice, the difference was not as prominent. However, Ag-carrying lung DCs expressed significantly higher CCR7 than non–Ag-carrying DCs. CCL19, CCL21, and KCa3.1 activator 1-EBIO induced an increase in intracellular calcium in both DC subsets. In addition, 1-EBIO–induced calcium increase was suppressed by TRAM-34. In vitro blockade of KCa3.1 with TRAM-34 impaired CCL19/CCL21-induced transmigration. In conclusion, KCa3.1 expression in lung DCs is up-regulated by OVA sensitization in both lung DC subsets, and KCa3.1 is involved in lung DC migration to lymphatic chemokines.
doi:10.1165/rcmb.2010-0514OC
PMCID: PMC3262686  PMID: 21493782
allergic airway inflammation; antigen uptake; asthma; calcium-activated potassium channel; dendritic cell
4.  Increased Expression of Angiopoietins and Tie2 in the Lungs of Chronic Asthmatic Mice 
Angiopoietin (Ang)1 and Ang2 are ligands for Tie2 tyrosine kinase receptor (Tie2). Elevated levels of Ang1 and Ang2 in induced sputum of patients with asthma have been reported, with a positive correlation of Ang2 levels with the severity of airway occlusion. Although studies have shown Tie2-mediated regulation of nonvascular cells in some pathological conditions, current knowledge on Tie2 signaling in asthma is limited to the vasculature. We examined the expression pattern of Ang1, Ang2, vascular endothelial growth factor (VEGF), and Tie2 and their correlation with the degree of airway remodeling in the lung of ovalbumin (OVA)-sensitized and OVA-challenged mice with airway hyperresponsiveness. Lung tissues were isolated from Balb/c mice after OVA sensitization and challenge. Hematoxylin and eosin, periodic acid-Schiff, and trichrome staining were used to show the lung pathology. The expression of Ang1, Ang2, VEGF, and Tie2 was examined using immunofluorescence, Western blot, ELISA, and real-time PCR. In the lung of normal mice, Tie2 expression was detected only in the blood vessels. However, in the lung of OVA-sensitized and OVA-challenged mice, Tie2 was abundantly expressed in airway epithelial cells and in a subset of macrophages in addition to constitutive expression in pulmonary vessels. The increase in Tie2 expression correlated with the severity of airway remodeling. Macrophages and airway epithelial cells express Ang2 and VEGF only in allergic models. Ang1 was constitutively expressed, with a decrease in mRNA level in allergic models. In conclusion, increased expression of Tie2 and Ang2 in allergic airway epithelium and alveolar macrophages correlates with the severity of airway remodeling.
doi:10.1165/rcmb.2009-0330OC
PMCID: PMC3095938  PMID: 20463289
airway epithelial cells; airway remodeling; angiopoietins; Tie2 tyrosine kinase receptor; vascular endothelial growth factor

Results 1-4 (4)