Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("kuala, Amy S.")
1.  The glutaredoxin/S-glutathionylation axis regulates interleukin 17A-induced pro-inflammatory responses in lung epithelial cells in association with S-glutathionylation of Nuclear Factor kappa B family proteins 
Interleukin-17A (IL-17A) is a newly emerging player in the pathogenesis of chronic lung diseases that amplifies inflammatory responses and promotes tissue remodeling. Stimulation of lung epithelial cells with IL-17A leads to activation of the transcription factor, nuclear factor kappa B (NF-κB), a key player in the orchestration of lung inflammation. We have previously demonstrated the importance of the redox-dependent post-translational modification, S-glutathionylation, in limiting activation of NF-κB and downstream gene induction. Under physiological conditions, the enzyme glutaredoxin 1 (Grx1) acts to deglutathionylate NF-κB proteins, which restores functional activity. In this study, we sought to determine the impacts of S-glutathionylation on IL-17A-induced NF-κB activation and expression of pro-inflammatory mediators. C10 mouse lung alveolar epithelial cells, or primary mouse tracheal epithelial cells exposed to IL-17A show rapid activation of NF-κB, and the induction of pro-inflammatory genes. Upon IL-17A exposure, sulfenic acid formation and S-glutathionylated proteins increased. Assessment of S-glutathionylation of NF-κB pathway components revealed S-glutathionylation of RelA (RelA-SSG) and inhibitory kappa B kinase alpha (IKKα-SSG) after stimulation with IL-17A. SiRNA-mediated ablation of Grx1 increased both RelA-SSG and IKKα-SSG and acutely increased nuclear content of RelA, and tended to decrease nuclear RelB. SiRNA mediated ablation or genetic ablation of Glrx1 decreased the expression of NF-κB regulated genes, KC and CCL20, in response to IL-17A, but conversely increased the expression of IL-6. Lastly, siRNAmediated ablation of IKKα attenuated nuclear RelA and RelB content and decreased expression of KC and CCL20 in response to IL-17A. Together, these data demonstrate a critical role for the S-glutathionylation/Grx1 redox axis in regulating IKKα and RelA S-glutathionylation and the responsiveness of epithelial cells to IL-17A.
PMCID: PMC4111997  PMID: 24816292
Interleukin-17A; glutaredoxin-1; protein S-glutathionylation; inhibitory kappa B kinase alpha; nuclear factor kappa B; redox
2.  Glutaredoxin-1 Attenuates S-Glutathionylation of the Death Receptor Fas and Decreases Resolution of Pseudomonas aeruginosa Pneumonia 
Rationale: The death receptor Fas is critical for bacterial clearance and survival of mice after Pseudomonas aeruginosa infection.
Objectives: Fas ligand (FasL)–induced apoptosis is augmented by S-glutathionylation of Fas (Fas-SSG), which can be reversed by glutaredoxin-1 (Grx1). Therefore, the objective of this study was to investigate the interplay between Grx1 and Fas in regulating the clearance of P. aeruginosa infection.
Methods: Lung samples from patients with bronchopneumonia were analyzed by immunofluorescence. Primary tracheal epithelial cells, mice lacking the gene for Grx1 (Glrx1−/−), Glrx1−/− mice treated with caspase inhibitor, or transgenic mice overexpressing Grx1 in the airway epithelium were analyzed after infection with P. aeruginosa.
Measurements and Main Results: Patient lung samples positive for P. aeruginosa infection demonstrated increased Fas-SSG compared with normal lung samples. Compared with wild-type primary lung epithelial cells, infection of Glrx1−/− cells with P. aeruginosa showed enhanced caspase 8 and 3 activities and cell death in association with increases in Fas-SSG. Infection of Glrx1−/− mice with P. aeruginosa resulted in enhanced caspase activity and increased Fas-SSG as compared with wild-type littermates. Absence of Glrx1 significantly enhanced bacterial clearance, and decreased mortality postinfection with P. aeruginosa. Inhibition of caspases significantly decreased bacterial clearance postinfection with P. aeruginosa, in association with decreased Fas-SSG. In contrast, transgenic mice that overexpress Grx1 in lung epithelial cells had significantly higher lung bacterial loads, enhanced mortality, decreased caspase activation, and Fas-SSG in the lung after infection with P. aeruginosa, compared with wild-type control animals.
Conclusions: These results suggest that S-glutathionylation of Fas within the lung epithelium enhances epithelial apoptosis and promotes clearance of P. aeruginosa and that glutaredoxin-1 impairs bacterial clearance and increases the severity of pneumonia in association with deglutathionylation of Fas.
PMCID: PMC3977722  PMID: 24325366
Pseudomonas; glutaredoxin-1; protein S-glutathionylation; Fas; apoptosis
3.  Cooperation between Classical and Alternative NF-κB Pathways Regulates Proinflammatory Responses in Epithelial Cells 
The transcription factor NF-κB has been causally linked to inflammatory lung diseases. Recent studies have unraveled the complexity of NF-κB activation by identifying two parallel activation pathways: the classical NF-κB pathway, which is controlled by IκB kinase complex–β (IKKβ) and RelA/p50, and the alternative pathway, which is controlled by IKKα and RelB/p52. The alternative pathway regulates adaptive immune responses and lymphoid development, yet its role in the regulation of innate immune responses remains largely unknown. In this study, we determined the relevance of the alternative NF-κB pathway in proinflammatory responses in lung epithelial cells. The exposure of C10 murine alveolar lung epithelial cells to diverse stimuli, or primary murine tracheal epithelial cells to LPS, resulted in the activation of both NF-κB pathways, based on the nuclear translocation of RelA, p50, RelB, and p52. Increases in the nuclear content of RelA occurred rapidly, but transiently, whereas increases in nuclear RelB content were protracted. The small interfering (si) RNA–mediated knockdown of IKKα, RelA, or RelB resulted in decreases of multiple LPS-induced proinflammatory cytokines. Surprisingly, the siRNA ablation of IKKα or RelB led to marked increases in the production of IL-6 in response to LPS. The simultaneous expression of constitutively active (CA)-IKKα and CA-IKKβ caused synergistic increases in proinflammatory mediators. Lastly, the disruption of the IKK signalsome inhibited the activation of both NF-κB pathways. These results demonstrate that the coordinated activation of both NF-κB pathways regulates the magnitude and nature of proinflammatory responses in lung epithelial cells.
PMCID: PMC3488618  PMID: 22652196
lung; IκB kinase–β; IκB kinase–α; RelA; RelB
4.  Induction of a Mesenchymal Expression Program in Lung Epithelial Cells by Wingless Protein (Wnt)/β-Catenin Requires the Presence of c-Jun N-Terminal Kinase–1 (JNK1) 
Recent studies suggest the importance of the transition of airway epithelial cells (EMT) in pulmonary fibrosis, and also indicate a role for Wingless protein (Wnt)/β-catenin signaling in idiopathic pulmonary fibrosis. We investigated the possible role of the Wnt signaling pathway in inducing EMT in lung epithelial cells, and sought to unravel the role of c-Jun–N-terminal-kinase–1 (JNK1). The exposure of C10 lung epithelial cells or primary mouse tracheal epithelial cells (MTECs) to Wnt3a resulted in increases in JNK phosphorylation and nuclear β-catenin content. Because the role of β-catenin as a transcriptional coactivator is well established, we investigated T-cell factor/lymphocyte-enhancement factor (TCF/LEF) transcriptional activity in C10 lung epithelial cells after the activation of Wnt. TCF/LEF transcriptional activity was enhanced after the activation of Wnt, and this increase in TCF/LEF transcriptional activity was diminished after the small interfering (si)RNA-mediated ablation of JNK. The activation of the Wnt pathway by Wnt3a, or the expression of either wild-type or constitutively active β-catenin (S37A), led to the activation of an EMT transcriptome, manifested by the increased mRNA expression of CArG box-binding factor–A, fibroblast-specific protein (FSP)–1, α–smooth muscle actin (α-SMA), and vimentin, increases in the content of α-SMA and FSP1, and the concomitant loss of zona occludens–1. The siRNA-mediated ablation of β-catenin substantially decreased Wnt3a-induced EMT. The siRNA ablation of JNK1 largely abolished Wnt3a, β-catenin, and β-catenin S37a-induced EMT. In MTECs lacking Jnk1, Wnt3a-induced increases in nuclear β-catenin, EMT transcriptome, and the content of α-SMA or FSP1 were substantially diminished. These data show that the activation of the Wnt signaling pathway is capable of inducing an EMT program in lung epithelial cells through β-catenin, and that this process is controlled by JNK1.
PMCID: PMC3488690  PMID: 22461429
lung; epithelium; Wnt3a; fibrosis; epithelial to mesenchymal transition
5.  Influenza Induces Endoplasmic Reticulum Stress, Caspase-12–Dependent Apoptosis, and c-Jun N-Terminal Kinase–Mediated Transforming Growth Factor–β Release in Lung Epithelial Cells 
Influenza A virus (IAV) infection is known to induce endoplasmic reticulum (ER) stress, Fas-dependent apoptosis, and TGF-β production in a variety of cells. However, the relationship between these events in murine primary tracheal epithelial cells (MTECS), which are considered one of the primary sites of IAV infection and replication, is unclear. We show that IAV infection induced ER stress marker activating transcription factor–6 and endoplasmic reticulum protein 57-kD (ERp57), but not C/EBP homologous protein (CHOP). In contrast, the ER stress inducer thapsigargin (THP) increased CHOP. IAV infection activated caspases and apoptosis, independently of Fas and caspase-8, in MTECs. Instead, apoptosis was mediated by caspase-12. A decrease in ERp57 attenuated the IAV burden and decreased caspase-12 activation and apoptosis in epithelial cells. TGF-β production was enhanced in IAV–infected MTECs, compared with THP or staurosporine. IAV infection caused the activation of c-Jun N-terminal kinase (JNK). Furthermore, IAV-induced TGF-β production required the presence of JNK1, a finding that suggests a role for JNK1 in IAV-induced epithelial injury and subsequent TGF-β production. These novel findings suggest a potential mechanistic role for a distinct ER stress response induced by IAV, and a profibrogenic/repair response in contrast to other pharmacological inducers of ER stress. These responses may also have a potential role in acute lung injury, fibroproliferative acute respiratory distress syndrome, and the recently identified H1N1 influenza–induced exacerbations of chronic obstructive pulmonary disease (Wedzicha JA. Proc Am Thorac Soc 2004;1:115–120) and idiopathic pulmonary fibrosis (Umeda Y, et al. Int Med 2010;49:2333–2336).
PMCID: PMC3359902  PMID: 21799120
ER stress; influenza A virus; ATF6; ERp57; TGF-β
6.  Redox-Based Regulation of Apoptosis: S-Glutathionylation As a Regulatory Mechanism to Control Cell Death 
Antioxidants & Redox Signaling  2012;16(6):496-505.
Significance: Redox-based signaling governs a number of important pathways in tissue homeostasis. Consequently, deregulation of redox-controlled processes has been linked to a number of human diseases. Among the biological processes regulated by redox signaling, apoptosis or programmed cell death is a highly conserved process important for tissue homeostasis. Apoptosis can be triggered by a wide variety of stimuli, including death receptor ligands, environmental agents, and cytotoxic drugs. Apoptosis has also been implicated in the etiology of many human diseases. Recent Advances: Recent discoveries demonstrate that redox-based changes are required for efficient activation of apoptosis. Among these redox changes, alterations in the abundant thiol, glutathione (GSH), and the oxidative post-translational modification, protein S-glutathionylation (PSSG) have come to the forefront as critical regulators of apoptosis. Critical Issues: Although redox-based changes have been documented in apoptosis and disease pathogenesis, the mechanistic details, whereby redox perturbations intersect with pathogenic processes, remain obscure. Future Directions: Further research will be needed to understand the context in which of the members of the death receptor pathways undergo ligand dependent oxidative modifications. Additional investigation into the interplay between oxidative modifications, redox enzymes, and apoptosis pathway members are also critically needed to improve our understanding how redox-based control is achieved. Such analyses will be important in understanding the diverse chronic diseases. In this review we will discuss the emerging paradigms in our current understanding of redox-based regulation of apoptosis with an emphasis on S-glutathionylation of proteins and the enzymes involved in this important post-translational modification. Antioxid. Redox Signal. 16, 496–505.
PMCID: PMC3304251  PMID: 21929356
7.  Oxidative Processing of Latent Fas in the Endoplasmic Reticulum Controls the Strength of Apoptosis 
Molecular and Cellular Biology  2012;32(17):3464-3478.
We recently demonstrated that S-glutathionylation of the death receptor Fas (Fas-SSG) amplifies apoptosis (V. Anathy et al., J. Cell Biol. 184:241–252, 2009). In the present study, we demonstrate that distinct pools of Fas exist in cells. Upon ligation of surface Fas, a separate pool of latent Fas in the endoplasmic reticulum (ER) underwent rapid oxidative processing characterized by the loss of free sulfhydryl content (Fas-SH) and resultant increases in S-glutathionylation of Cys294, leading to increases of surface Fas. Stimulation with FasL rapidly induced associations of Fas with ERp57 and glutathione S-transferase π (GSTP), a protein disulfide isomerase and catalyst of S-glutathionylation, respectively, in the ER. Knockdown or inhibition of ERp57 and GSTP1 substantially decreased FasL-induced oxidative processing and S-glutathionylation of Fas, resulting in decreased death-inducing signaling complex formation and caspase activity and enhanced survival. Bleomycin-induced pulmonary fibrosis was accompanied by increased interactions between Fas-ERp57-GSTP1 and S-glutathionylation of Fas. Importantly, fibrosis was largely prevented following short interfering RNA-mediated ablation of ERp57 and GSTP. Collectively, these findings illuminate a regulatory switch, a ligand-initiated oxidative processing of latent Fas, that controls the strength of apoptosis.
PMCID: PMC3422013  PMID: 22751926
8.  Cigarette Smoke Targets Glutaredoxin 1, Increasing S-Glutathionylation and Epithelial Cell Death 
It is established that cigarette smoke (CS) causes irreversible oxidations in lung epithelial cells, and can lead to their death. However, its impact on reversible and physiologically relevant redox-dependent protein modifications remains to be investigated. Glutathione is an important antioxidant against inhaled reactive oxygen species as a direct scavenger, but it can also covalently bind protein thiols upon mild oxidative stress to protect them against irreversible oxidation. This posttranslational modification, known as S-glutathionylation, can be reversed under physiological conditions by the enzyme, glutaredoxin 1 (Grx1). The aim of this study was to investigate if CS modifies Grx1, and if this impacts on protein S-glutathionylation and epithelial cell death. Upon exposure of alveolar epithelial cells to CS extract (CSE), a decrease in Grx1 mRNA and protein expression was observed, in conjunction with decreased activity and increased protein S-glutathionylation. Using mass spectrometry, irreversible oxidation of recombinant Grx1 by CSE and acrolein was demonstrated, which was associated with attenuated enzyme activity. Furthermore, carbonylation of Grx1 in epithelial cells after exposure to CSE was shown. Overexpression of Grx1 attenuated CSE-induced increases in protein S-glutathionylation and increased survival. Conversely, primary tracheal epithelial cells of mice lacking Grx1 were more sensitive to CS-induced cell death, with corresponding increases in protein S-glutathionylation. These results show that CS can modulate Grx1, not only at the expression level, but can also directly modify Grx1 itself, decreasing its activity. These findings demonstrate a role for the Grx1/S-glutathionylation redox system in CS-induced lung epithelial cell death.
PMCID: PMC3262689  PMID: 21454804
chronic obstructive pulmonary disease; cigarette smoke; cell death; glutaredoxin; protein S-glutathionylation
9.  Activation of the glutaredoxin-1 gene by Nuclear Factor kappa B enhances signaling 
Free radical biology & medicine  2011;51(6):1249-1257.
The transcription factor, Nuclear Factor kappa B (NF-κB) is a critical regulator of inflammation and immunity, and is negatively regulated via S-glutathionylation. The inhibitory effect of S-glutathionylation is overcome by glutaredoxin-1 (Grx1), which under physiological conditions catalyses deglutathionylation and enhances NF-κB activation. The mechanisms whereby expression of the Glrx1 gene is regulated remain unknown. Here we examined the role of NF-κB in regulating activation of Glrx1. Transgenic mice which express a doxycyclin-inducible constitutively active version of inhibitory kappa B kinase-beta (CA-IKKβ) demonstrate elevated expression of Grx1. Transient transfection of CA-IKKβ also resulted in significant induction of Grx1. A 2kb region Glrx1 promoter that contains two putative NF-κB binding sites was activated by CA-IKKβ, RelA/p50, and lipopolysaccharide (LPS). Chromatin immunoprecipitation experiments confirmed binding of RelA to the promoter of Glrx1 in response to LPS. Stimulation of C10 lung epithelial cells with LPS caused transient increases in Grx1 mRNA expression, and time-dependent increases in S-glutathionylation of IKKβ. Overexpression of Grx1 decreased S-glutathionylation of IKKβ, prolonged NF-κB activation, and increased levels of pro-inflammatory mediators. Collectively, this study demonstrates that the Glrx1 gene is positively regulated by NF-κB, and suggests a feed forward mechanism to promote NF-κB signaling by decreasing S-glutathionylation.
PMCID: PMC3181077  PMID: 21762778
S-glutathionylation; Nuclear Factor kappa B; Glutaredoxin; Lung; Inhibitory kappa B kinase
10.  Ablation of Glutaredoxin-1 Attenuates Lipopolysaccharide-Induced Lung Inflammation and Alveolar Macrophage Activation 
Protein S-glutathionylation (PSSG), a reversible posttranslational modification of reactive cysteines, recently emerged as a regulatory mechanism that affects diverse cell-signaling cascades. The extent of cellular PSSG is controlled by the oxidoreductase glutaredoxin-1 (Grx1), a cytosolic enzyme that specifically de-glutathionylates proteins. Here, we sought to evaluate the impact of the genetic ablation of Grx1 on PSSG and on LPS-induced lung inflammation. In response to LPS, Grx1 activity increased in lung tissue and bronchoalveolar lavage (BAL) fluid in WT (WT) mice compared with PBS control mice. Glrx1−/− mice consistently showed slight but statistically insignificant decreases in total numbers of inflammatory cells recovered by BAL. However, LPS-induced concentrations of IL-1β, TNF-α, IL-6, and Granulocyte/Monocyte Colony–Stimulating Factor (GM-CSF) in BAL were significantly decreased in Glrx1−/− mice compared with WT mice. An in situ assessment of PSSG reactivity and a biochemical evaluation of PSSG content demonstrated increases in the lung tissue of Glrx1−/− animals in response to LPS, compared with WT mice or PBS control mice. We also demonstrated that PSSG reactivity was prominent in alveolar macrophages (AMs). Comparative BAL analyses from WT and Glrx1−/− mice revealed fewer and smaller AMs in Glrx1−/− mice, which showed a significantly decreased expression of NF-κB family members, impaired nuclear translocation of RelA, and lower levels of NF-κB–dependent cytokines after exposure to LPS, compared with WT cells. Taken together, these results indicate that Grx1 regulates the production of inflammatory mediators through control of S-glutathionylation–sensitive signaling pathways such as NF-κB, and that Grx1 expression is critical to the activation of AMs.
PMCID: PMC3095922  PMID: 20539014
lipopolysaccharide; glutaredoxin-1; protein S-glutathionylation; nuclear factor-κB
11.  c-Jun N-Terminal Kinase 1 Promotes Transforming Growth Factor–β1–Induced Epithelial-to-Mesenchymal Transition via Control of Linker Phosphorylation and Transcriptional Activity of Smad3 
Transforming growth factor (TGF)–β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1–induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1–induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1–induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor–1, fibronectin-1, high-mobility group A2, CArG box–binding factor–A, and fibroblast-specific protein–1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1–induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1–induced EMT.
PMCID: PMC3095928  PMID: 20581097
transforming growth factor–β1; c-Jun N-terminal kinase 1; Smad3; epithelial-to-mesenchymal transition
12.  Distinct Functions of Airway Epithelial Nuclear Factor-κB Activity Regulate Nitrogen Dioxide–Induced Acute Lung Injury 
Reactive oxidants such as nitrogen dioxide (NO2) injure the pulmonary epithelium, causing airway damage and inflammation. We previously demonstrated that nuclear factor-κ B (NF-κB) activation within airway epithelial cells occurs in response to NO2 inhalation, and is critical for lipopolysaccharide-induced or antigen-induced inflammatory responses. Here, we investigated whether manipulation of NF-κB activity in lung epithelium affected severe lung injuries induced by NO2 inhalation. Wild-type C57BL/6J, CC10-IκBαSR transgenic mice with repressed airway epithelial NF-κB function, or transgenic mice expressing a doxycycline-inducible, constitutively active I κ B kinase β (CC10-rTet-CAIKKβ) with augmented NF-κB function in airway epithelium, were exposed to toxic levels of 25 ppm or 50 ppm NO2 for 6 hours a day for 1 or 3 days. In wild-type mice, NO2 caused the activation of NF-κB in airway epithelium after 6 hours, and after 3 days resulted in severe acute lung injury, characterized by neutrophilia, peribronchiolar lesions, and increased protein, lactate dehydrogenase, and inflammatory cytokines. Compared with wild-type mice, neutrophilic inflammation and elastase activity, lung injury, and several proinflammatory cytokines were significantly suppressed in CC10-IκBαSR mice exposed to 25 or 50 ppm NO2. Paradoxically, CC10-rTet-CAIKKβ mice that received doxycycline showed no further increase in NO2-induced lung injury compared with wild-type mice exposed to NO2, instead displaying significant reductions in histologic parameters of lung injury, despite elevations in several proinflammatory cytokines. These intriguing findings demonstrate distinct functions of airway epithelial NF-κB activities in oxidant-induced severe acute lung injury, and suggest that although airway epithelial NF-κB activities modulate NO2-induced pulmonary inflammation, additional NF-κB–regulated functions confer partial protection from lung injury.
PMCID: PMC2951874  PMID: 19901348
epithelium; NF-κB; inflammation; nitrogen dioxide; lung injury
13.  Regulation of apoptosis through cysteine oxidation: implications for fibrotic lung disease 
Tissue fibrosis is believed to be a manifestation of dysregulated repair following injury, in association with impaired reepithelialization, and aberrant myofibroblast activation and proliferation. Numerous pathways have been linked to the pathogenesis of fibrotic lung disease, including the death receptor Fas, which contributes to apoptosis of lung epithelial cells. A redox imbalance also has been implicated in disease pathogenesis, although mechanistic details whereby oxidative changes intersect with profibrotic signaling pathways remain elusive. Oxidation of cysteines in proteins, such as S-glutathionylation (PSSG), is known to act as a regulatory event that affects protein function. This manuscript will discuss evidence that S-glutathionylation regulates death receptor induced apoptosis, and the potential implications for cysteine oxidations in the pathogenesis of in fibrotic lung disease.
PMCID: PMC2943339  PMID: 20716279
S-glutathionylation; glutaredoxin; Fas; apoptosis; fibrosis; lung
14.  Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-β1 
Journal of cell science  2008;121(Pt 7):1036-1045.
Transforming growth factor β1 (TGF-β1) is a cardinal cytokine in the pathogenesis of airway remodeling, and promotes epithelial-to-mesenchymal transition (EMT). As a molecular interaction between TGF-β1 and Jun N-terminal kinase (JNK) has been demonstrated, the goal of this study was to elucidate whether JNK plays a role in TGF-β1-induced EMT. Primary cultures of mouse tracheal epithelial cells (MTEC) from wild-type, JNK1–/– or JNK2–/– mice were comparatively evaluated for their ability to undergo EMT in response to TGF-β1. Wild-type MTEC exposed to TGF-β1 demonstrated a prominent induction of mesenchymal mediators and a loss of epithelial markers, in conjunction with a loss of trans-epithelial resistance (TER). Significantly, TGF-β1-mediated EMT was markedly blunted in epithelial cells lacking JNK1, while JNK2–/– MTEC underwent EMT in response to TGF-β1 in a similar way to wild-type cells. Although Smad2/3 phosphorylation and nuclear localization of Smad4 were similar in JNK1–/– MTEC in response to TGF-β1, Smad DNA-binding activity was diminished. Gene expression profiling demonstrated a global suppression of TGF-β1-modulated genes, including regulators of EMT in JNK1–/– MTEC, in comparison with wild-type cells. In aggregate, these results illuminate the novel role of airway epithelial-dependent JNK1 activation in EMT.
PMCID: PMC2876720  PMID: 18334556
Lung; EMT; TGF-β; JNK; SMAD; Mouse
15.  Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas 
The Journal of Cell Biology  2009;184(2):241-252.
Reactive oxygen species (ROS) increase ligation of Fas (CD95), a receptor important for regulation of programmed cell death. Glutathionylation of reactive cysteines represents an oxidative modification that can be reversed by glutaredoxins (Grxs). The goal of this study was to determine whether Fas is redox regulated under physiological conditions. In this study, we demonstrate that stimulation with Fas ligand (FasL) induces S-glutathionylation of Fas at cysteine 294 independently of nicotinamide adenine dinucleotide phosphate reduced oxidase–induced ROS. Instead, Fas is S-glutathionylated after caspase-dependent degradation of Grx1, increasing subsequent caspase activation and apoptosis. Conversely, overexpression of Grx1 attenuates S-glutathionylation of Fas and partially protects against FasL-induced apoptosis. Redox-mediated Fas modification promotes its aggregation and recruitment into lipid rafts and enhances binding of FasL. As a result, death-inducing signaling complex formation is also increased, and subsequent activation of caspase-8 and -3 is augmented. These results define a novel redox-based mechanism to propagate Fas-dependent apoptosis.
PMCID: PMC2654302  PMID: 19171757
16.  Nuclear Factor-κB Activation in Airway Epithelium Induces Inflammation and Hyperresponsiveness 
Rationale: Nuclear factor (NF)-κB is a prominent proinflammatory transcription factor that plays a critical role in allergic airway disease. Previous studies demonstrated that inhibition of NF-κB in airway epithelium causes attenuation of allergic inflammation.
Objectives: We sought to determine if selective activation of NF-κB within the airway epithelium in the absence of other agonists is sufficient to cause allergic airway disease.
Methods: A transgenic mouse expressing a doxycycline (Dox)-inducible, constitutively active (CA) version of inhibitor of κB (IκB) kinase-β (IKKβ) under transcriptional control of the rat CC10 promoter, was generated.
Measurements and Main Results: After administration of Dox, expression of the CA-IKKβ transgene induced the nuclear translocation of RelA in airway epithelium. IKKβ-triggered activation of NF-κB led to an increased content of neutrophils and lymphocytes, and concomitant production of proinflammatory mediators, responses that were not observed in transgenic mice not receiving Dox, or in transgene-negative littermate control animals fed Dox. Unexpectedly, expression of the IKKβ transgene in airway epithelium was sufficient to cause airway hyperresponsiveness and smooth muscle thickening in absence of an antigen sensitization and challenge regimen, the presence of eosinophils, or the induction of mucus metaplasia.
Conclusions: These findings demonstrate that selective activation NF-κB in airway epithelium is sufficient to induce airway hyperresponsiveness and smooth muscle thickening, which are both critical features of allergic airway disease.
PMCID: PMC2361423  PMID: 18263801
airway epithelium; nuclear factor-κB; inhibitory κB kinase-β; airway hyperresponsiveness; smooth muscle cell
17.  Reactive Nitrogen Species-Induced Cell Death Requires Fas-Dependent Activation of c-Jun N-Terminal Kinase 
Molecular and Cellular Biology  2004;24(15):6763-6772.
Nitrogen dioxide is a highly toxic reactive nitrogen species (RNS) recently discovered as an inflammatory oxidant with great potential to damage tissues. We demonstrate here that cell death by RNS was caused by c-Jun N-terminal kinase (JNK). Activation of JNK by RNS was density dependent and caused mitochondrial depolarization and nuclear condensation. JNK activation by RNS was abolished in cells lacking functional Fas or following expression of a truncated version of Fas lacking the intracellular death domain. In contrast, RNS induced JNK potently in cells expressing a truncated version of tumor necrosis factor receptor 1 or cells lacking tumor necrosis factor receptor 1 (TNF-R1), illustrating a dependence of Fas but not TNF-R1 in RNS-induced signaling to JNK. Furthermore, Fas was oxidized, redistributed, and colocalized with Fas-associated death domain (FADD) in RNS-exposed cells, illustrating that RNS directly targeted Fas. JNK activation and cell death by RNS occurred in a Fas ligand- and caspase-independent manner. While the activation of JNK by RNS or FasL required FADD, the cysteine-rich domain 1 containing preligand assembly domain required for FasL signaling was not involved in JNK activation by RNS. These findings illustrate that RNS cause cell death in a Fas- and JNK-dependent manner and that this occurs through a pathway distinct from FasL. Thus, avenues aimed at preventing the interaction of RNS with Fas may attenuate tissue damage characteristic of chronic inflammatory diseases that are accompanied by high levels of RNS.
PMCID: PMC444859  PMID: 15254243

Results 1-17 (17)