Search tips
Search criteria

Results 1-25 (118)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Sp1-mediated nonmuscle myosin light chain kinase expression and enhanced activity in vascular endothelial growth factor–induced vascular permeability 
Pulmonary Circulation  2015;5(4):707-715.
Despite the important role played by the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier regulation and the implication of both nmMLCK and vascular endothelial growth factor (VEGF) in the pathogenesis of acute respiratory distress syndrome (ARDS), the role played by nmMLCK in VEGF-induced vascular permeability is poorly understood. In this study, the role played by nmMLCK in VEGF-induced vascular hyperpermeability was investigated. Human lung endothelial cell barrier integrity in response to VEGF is examined in both the absence and the presence of nmMLCK small interfering RNAs. Levels of nmMLCK messenger RNA (mRNA), protein, and promoter activity expression were monitored after VEGF stimulation in lung endothelial cells. nmMYLK promoter activity was assessed using nmMYLK promoter luciferase reporter constructs with a series of nested deletions. nmMYLK transcriptional regulation was further characterized by examination of a key transcriptional factor. nmMLCK plays an important role in VEGF-induced permeability. We found that activation of the VEGF signaling pathway in lung endothelial cells increases MYLK gene product at both mRNA and protein levels. Increased nmMLCK mRNA and protein expression is a result of increased nmMYLK promoter activity, regulated in part by binding of the Sp1 transcription factor on triggering by the VEGF signaling pathway. Taken together, these findings suggest that MYLK is an important ARDS candidate gene and a therapeutic target that is highly influenced by excessive VEGF concentrations in the inflamed lung.
PMCID: PMC4671745  PMID: 26697178
vascular endothelial growth factor (VEGF); MYLK; myosin light chain kinase (MLCK); Sp1; promoter; transcription factor; endothelial; permeability; ARDS
2.  The NAMPT Promoter Is Regulated by Mechanical Stress, Signal Transducer and Activator of Transcription 5, and Acute Respiratory Distress Syndrome–Associated Genetic Variants 
Increased nicotinamide phosphoribosyltransferase (NAMPT) transcription is mechanistically linked to ventilator-induced inflammatory lung injury (VILI), with VILI severity attenuated by reduced NAMPT bioavailability. The molecular mechanisms of NAMPT promoter regulation in response to excessive mechanical stress remain poorly understood. The objective of this study was to define the contribution of specific transcription factors, acute respiratory distress syndrome (ARDS)-associated single nucleotide polymorphisms (SNPs), and promoter demethylation to NAMPT transcriptional regulation in response to mechanical stress. In vivo NAMPT protein expression levels were examined in mice exposed to high tidal volume mechanical ventilation. In vitro NAMPT expression levels were examined in human pulmonary artery endothelial cells exposed to 5 or 18% cyclic stretch (CS), with NAMPT promoter activity assessed using NAMPT promoter luciferase reporter constructs with a series of nested deletions. In vitro NAMPT transcriptional regulation was further characterized by measuring luciferase activity, DNA demethylation, and chromatin immunoprecipitation. VILI-challenged mice exhibited significantly increased NAMPT expression in bronchoalveolar lavage leukocytes and in lung endothelium. A mechanical stress–inducible region (MSIR) was identified in the NAMPT promoter from −2,428 to −2,128 bp. This MSIR regulates NAMPT promoter activity, mRNA expression, and signal transducer and activator of transcription 5 (STAT5) binding, which is significantly increased by 18% CS. In addition, NAMPT promoter activity was increased by pharmacologic promoter demethylation and inhibited by STAT5 silencing. ARDS-associated NAMPT promoter SNPs rs59744560 (−948G/T) and rs7789066 (−2,422A/G) each significantly elevated NAMPT promoter activity in response to 18% CS in a STAT5-dependent manner. Our results show that NAMPT is a key novel ARDS therapeutic target and candidate gene with genetic/epigenetic transcriptional regulation in response to excessive mechanical stress.
PMCID: PMC4224084  PMID: 24821571
acute respiratory distress syndrome; cyclic stretch; nicotinamide phosphoribosyltransferase; B cell colony-enhancing factor; signal transducer and activator of transcription 5
3.  Nicotinamide Phosphoribosyltransferase Inhibitor Is a Novel Therapeutic Candidate in Murine Models of Inflammatory Lung Injury 
We previously identified the intracellular nicotinamide phosphoribosyltransferase (iNAMPT, aka pre–B-cell colony enhancing factor) as a candidate gene promoting acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) with circulating nicotinamide phosphoribosyltransferase potently inducing NF-κB signaling in lung endothelium. iNAMPT also synthesizes intracellular nicotinamide adenine dinucleotide (iNAD) in response to extracellular oxidative stress, contributing to the inhibition of apoptosis via ill-defined mechanisms. We now further define the role of iNAMPT activity in the pathogenesis of ARDS/VILI using the selective iNAMPT inhibitor FK-866. C57/B6 mice were exposed to VILI (40 ml/kg, 4 h) or LPS (1.5 mg/kg, 18 h) after osmotic pump delivery of FK-866 (100 mg/kg/d, intraperitoneally). Assessment of total bronchoalveolar lavage (BAL) protein, polymorphonuclear neutrophil (PMN) levels, cytokine levels (TNF-α, IL-6, IL-1α), lung iNAD levels, and injury scores revealed that FK-866–mediated iNAMPT inhibition successfully reduced lung tissue iNAD levels, BAL injury indices, inflammatory cell infiltration, and lung injury scores in LPS- and VILI-exposed mice. FK-866 further increased lung PMN apoptosis, as reflected by caspase-3 activation in BAL PMNs. These findings support iNAMPT inhibition via FK-866 as a novel therapeutic agent for ARDS via enhanced apoptosis in inflammatory PMNs.
PMCID: PMC4148034  PMID: 24588101
apoptosis; FK-866; nicotinamide phosphoribosyltransferase; polymorphonuclear neutrophil; vascular endothelium
4.  Nonmuscle Myosin Light Chain Kinase Regulates Murine Asthmatic Inflammation 
Myosin light chain kinase (MLCK; gene code, MYLK) is a multifunctional enzyme involved in isoform-specific nonmuscle (nm) and smooth muscle contraction, inflammation, and vascular permeability, processes directly relevant to asthma pathobiology. In this report, we highlight the contribution of the nm isoform (nmMLCK) to asthma susceptibility and severity, supported by studies in two lines of transgenic mice with knocking out nmMLCK or selectively overexpressing nmMLCK in endothelium. These mice were sensitized to exhibit ovalbumin-mediated allergic inflammation. Genetically engineered mice with targeted nmMLCK deletion (nmMLCK−/−) exhibited significant reductions in lung inflammation and airway hyperresponsiveness. Conversely, mice with overexpressed nmMLCK in endothelium (nmMLCKec/ec) exhibited elevated susceptibility and severity in asthmatic inflammation. In addition, reduction of nmMLCK expression in pulmonary endothelium by small interfering RNA results in reduced asthmatic inflammation in wild-type mice. These pathophysiological assessments demonstrate the positive contribution of nmMLCK to asthmatic inflammation, and a clear correlation of the level of nmMLCK with the degree of experimental allergic inflammation. This study confirms MYLK as an asthma candidate gene, and verifies nmMLCK as a novel molecular target in asthmatic pathobiology.
PMCID: PMC4068916  PMID: 24428690
asthma; endothelial permeability; nonmuscle myosin light chain kinase; transgenic mice
5.  A nonmuscle myosin light chain kinase–dependent gene signature in peripheral blood mononuclear cells is linked to human asthma severity and exacerbation status 
Pulmonary Circulation  2015;5(2):335-338.
Asthma is increasingly recognized as a heterogeneous disease influenced by complex genetic and environmental contributions. Myosin light chain kinase (MLCK; gene symbol, MYLK), especially the nonmuscle isoform nmMLCK, is a cytoskeleton protein known to be related to human asthma susceptibility and severity, findings confirmed in preclinical models of asthmatic inflammation. In this study, we define the central capacity for a nmMLCK-influenced gene signature in human peripheral blood mononuclear cells to predict human asthma severity and exacerbation status. We refined this signature from a list of nmMLCK-influenced genes identified in lung tissues of nmMLCK knockout mice exposed to inflammatory stimuli (ventilator-induced lung injury), with subsequent identification of nmMLCK-influenced genes in a list of human asthma severity–related genes expressed in blood. The enriched nmMLCK-influenced gene signature successfully predicted human asthma severity and exacerbation status in both discovery and validation human asthma cohorts. These findings validate the central role played by nmMLCK in asthma susceptibility, severity, and exacerbation and further provide novel gene signatures as effective asthma biomarkers for severity, exacerbation, and prognosis.
PMCID: PMC4449245  PMID: 26064459
asthma exacerbation; asthma severity; nmMLCK; gene expression
6.  Excessive Mechanical Stress Increases HMGB1 Expression in Human Lung Microvascular Endothelial Cells Via STAT3 
Microvascular research  2013;92:50-55.
Ventilator-induced lung injury (VILI) occurs when the lung parenchyma and vasculature are exposed to repetitive and excessive mechanical stress via mechanical ventilation utilized as supportive care for the adult respiratory distress syndrome (ARDS). VILI induces gene expression and systemic release of inflammatory mediators that contribute to the multi-organ dysfunction and morbidity and mortality of ARDS. HMGB1, an intracellular transcription factor with cytokine properties, is a late mediator in sepsis and ARDS pathobiology, however, the role of HMGB1 in VILI remains poorly described. We now report HMGB1 expression in human lung microvessel endothelial cells (EC) exposed to excessive, equibiaxial mechanical stress, an in vitro correlate of VILI. We determined that high amplitude cyclic stretch (18% CS) increased HMGB1 expression (2-4 fold) via a signaling pathway with critical involvement of the transcription factor, STAT3. Concomitant exposure to 18% CS and oxidative stress (H2O2) augmented HMGB1 expression (~13 fold increase) whereas lipopolysaccharide (LPS) challenge increased HMGB1 expression in static EC, but not in 18% CS-challenged EC. In contrast, physiologic, low amplitude cyclic stretch (5% CS) attenuated both oxidative H2O2- and LPS-induced increases in HMGB1 expression, suggesting that physiologic mechanical stress is protective. These results indicate that HMGB1 gene expression is markedly responsive to VILI-mediated mechanical stress, an effect that is augmented by oxidative stress. We speculate that VILI-induced HMGB1 expression acts locally to increase vascular permeability and alveolar flooding, thereby exacerbating systemic inflammatory responses and increasing the likelihood of multi-organ dysfunction.
PMCID: PMC4327945  PMID: 24370952
Ventilator-induced lung injury; ARDS; endothelial cells; HMGB1; gene expression; transcription factor; STAT3; oxidant injury; lipopolysaccharide; mechanical stress
7.  Role of Migratory Inhibition Factor in Age-Related Susceptibility to Radiation Lung Injury via NF-E2–Related Factor–2 and Antioxidant Regulation 
Microvascular injury and increased vascular leakage are prominent features of radiation-induced lung injury (RILI), and often follow cancer-associated thoracic irradiation. Our previous studies demonstrated that polymorphisms in the gene (MIF) encoding macrophage migratory inhibition factor (MIF), a multifunctional pleiotropic cytokine, confer susceptibility to acute inflammatory lung injury and increased vascular permeability, particularly in senescent mice. In this study, we exposed wild-type and genetically engineered mif−/− mice to 20 Gy single-fraction thoracic radiation to investigate the age-related role of MIF in murine RILI (mice were aged 8 wk, 8 mo, or 16 mo). Relative to 8-week-old mice, decreased MIF was observed in bronchoalveolar lavage fluid and lung tissue of 8- to 16-month-old wild-type mice. In addition, radiated 8- to 16-month-old mif−/− mice exhibited significantly decreased bronchoalveolar lavage fluid total antioxidant concentrations with progressive age-related decreases in the nuclear expression of NF-E2–related factor–2 (Nrf2), a transcription factor involved in antioxidant gene up-regulation in response to reactive oxygen species. This was accompanied by decreases in both protein concentrations (NQO1, GCLC, and heme oxygenase–1) and mRNA concentrations (Gpx1, Prdx1, and Txn1) of Nrf2-influenced antioxidant gene targets. In addition, MIF-silenced (short, interfering RNA) human lung endothelial cells failed to express Nrf2 after oxidative (H2O2) challenge, an effect reversed by recombinant MIF administration. However, treatment with an antioxidant (glutathione reduced ester), but not an Nrf2 substrate (N-acetyl cysteine), protected aged mif−/− mice from RILI. These findings implicate an important role for MIF in radiation-induced changes in lung-cell antioxidant concentrations via Nrf2, and suggest that MIF may contribute to age-related susceptibility to thoracic radiation.
PMCID: PMC3824032  PMID: 23526214
radiation pneumonitis; lung vascular permeability; macrophage migratory inhibition factor; Nrf2; antioxidant system; aging
8.  MicroRNA Regulation of Nonmuscle Myosin Light Chain Kinase Expression in Human Lung Endothelium 
Increased lung vascular permeability, the consequence of endothelial cell (EC) barrier dysfunction, is a cardinal feature of inflammatory conditions such as acute lung injury and sepsis and leads to lethal physiological dysfunction characterized by alveolar flooding, hypoxemia, and pulmonary edema. We previously demonstrated that the nonmuscle myosin light chain kinase isoform (nmMLCK) plays a key role in agonist-induced pulmonary EC barrier regulation. The present study evaluated posttranscriptional regulation of MYLK expression, the gene encoding nmMLCK, via 3′ untranslated region (UTR) binding by microRNAs (miRNAs) with in silico analysis identifying hsa-miR-374a, hsa-miR-374b, hsa-miR-520c-3p, and hsa-miR-1290 as miRNA candidates. We identified increased MYLK gene transcription induced by TNF-α (24 h; 4.7 ± 0.45 fold increase [FI]), LPS (4 h; 2.85 ± 0.15 [FI]), and 18% cyclic stretch (24 h; 4.6 ± 0.24 FI) that was attenuated by transfection of human lung ECs with mimics of hsa-miR-374a, hsa-miR-374b, hsa-miR-520c-3p, or hsa-miR-1290 (20–80% reductions by each miRNA). TNF-α, LPS, and 18% cyclic stretch each increased the activity of a MYLK 3′UTR luciferase reporter (2.5–7.0 FI) with induction reduced by mimics of each miRNA (30–60% reduction). MiRNA inhibitors (antagomirs) for each MYLK miRNA significantly increased 3′UTR luciferase activity (1.2–2.3 FI) and rescued the decreased MLCK-3′UTR reporter activity produced by miRNA mimics (70–110% increases for each miRNA; P < 0.05). These data demonstrate that increased human lung EC expression of MYLK by bioactive agonists (excessive mechanical stress, LPS, TNF-α) is regulated in part by specific miRNAs (hsa-miR-374a, hsa-miR-374b, hsa-miR-520c-3p, and hsa-miR-1290), representing a novel therapeutic strategy for reducing inflammatory lung injury.
PMCID: PMC3727884  PMID: 23492194
miRNA; MLCK; acute lung injury; ventilator-induced lung injury; endothelial cells
9.  Pleiotropic effects of interleukin-6 in a “two-hit” murine model of acute respiratory distress syndrome 
Pulmonary Circulation  2014;4(2):280-288.
Patients with acute respiratory distress syndrome (ARDS) exhibit elevated levels of interleukin-6 (IL-6), which correlate with increased morbidity and mortality. The exact role of IL-6 in ARDS has proven difficult to study because it exhibits either pro- or anti-inflammatory actions in mouse models of lung injury, depending on the model utilized. In order to improve understanding of the role of this complex cytokine in ARDS, we evaluated IL-6 using the clinically relevant combination of lipopolysaccharide (LPS) and ventilator-induced lung injury (VILI) in IL-6−/− mice. Bronchoalveolar lavage fluid (BAL), whole-lung tissue, and histology were evaluated for inflammatory markers of injury. Transendothelial electrical resistance was used to evaluate the action of IL-6 on endothelial cells in vitro. In wild-type mice, the combination model showed a significant increase in lung injury compared to either LPS or VILI alone. IL-6−/− mice exhibited a statistically significant decrease in BAL cellular inflammation as well as lower histologic scores for lung injury, changes observed only in the combination model. A paradoxical increase in BAL total protein was observed in IL-6−/− mice exposed to LPS, suggesting that IL-6 provides protection from vascular leakage. However, in vitro data showed that IL-6, when combined with its soluble receptor, actually caused a significant increase in endothelial cell permeability, suggesting that the protection seen in vivo was likely due to complex interactions of IL-6 and other inflammatory mediators rather than to direct effects of IL-6. These studies suggest that a dual-injury model exhibits utility in evaluating the pleiotropic effects of IL-6 in ARDS on inflammatory cells and lung endothelium.
PMCID: PMC4070787  PMID: 25006447
acute respiratory distress syndrome (ARDS); interleukin-6 (IL-6); lipopolysaccharide (LPS); ventilator-induced lung injury (VILI)
10.  MicroRNAs Implicated in Dysregulation of Gene Expression Following Human Lung Transplantation 
Translational respiratory medicine  2013;1(1):10.1186/2213-0802-1-12.
Lung transplantation remains the only viable treatment option for the majority of patients with advanced lung diseases. However, 5-year post-transplant survival rates remain low primarily secondary to chronic rejection. Novel insights from global gene expression profiles may provide molecular phenotypes and therapeutic targets to improve outcomes after lung transplantation.
Whole-genome gene expression profiling was performed in a cohort of patients that underwent lung transplantation as well as healthy controls using the Affymetrix Human Exon 1.0ST Array. To explore the potential roles of microRNAs (miRNAs) in regulating lung transplantation-associated gene dysregulation, miRNA expression levels were also profiled in the same samples using the Exiqon miRCURY™ LNA Array.
In a cohort of 18 lung transplant patients, 364 dysregulated genes were identified in Caucasian lung transplant patients relative to normal individuals. Pathway enrichment analysis of the dysregulated genes pointed to Gene Ontology biological processes such as “defense response”, “immune response” and “response to wounding”. We then compared the expression profiles of potential regulating miRNAs, suggesting that dysregulation of a number of lung transplantation-associated genes (e.g., ATR, FUT8, LRRC8B, NFKBIA) may be attributed to the dysregulation of their respective regulating miRNAs.
Following human lung transplantation, a substantial proportion of genes, particularly those genes involved in certain biological processes like immune response, were dysregulated in patients relative to their healthy counterparts. This exploratory analysis of the relationships between miRNAs and their gene targets in the context of lung transplantation warrants further investigation and may serve as novel therapeutic targets in lung transplant complications.
PMCID: PMC3886917  PMID: 24416715
lung transplant; gene expression; microRNA; pathway; gene ontology
11.  Sphingosine-1–Phosphate Receptor–3 Is a Novel Biomarker in Acute Lung Injury 
The inflamed lung exhibits oxidative and nitrative modifications of multiple target proteins, potentially reflecting disease severity and progression. We identified sphingosine-1–phosphate receptor–3 (S1PR3), a critical signaling molecule mediating cell proliferation and vascular permeability, as a nitrated plasma protein in mice with acute lung injury (ALI). We explored S1PR3 as a potential biomarker in murine and human ALI. In vivo nitrated and total S1PR3 concentrations were determined by immunoprecipitation and microarray studies in mice, and by ELISA in human plasma. In vitro nitrated S1PR3 concentrations were evaluated in human lung vascular endothelial cells (ECs) or within microparticles shed from ECs after exposure to barrier-disrupting agonists (LPS, low-molecular-weight hyaluronan, and thrombin). The effects of S1PR3-containing microparticles on EC barrier function were assessed by transendothelial electrical resistance (TER). Nitrated S1PR3 was identified in the plasma of murine ALI and in humans with severe sepsis-induced ALI. Elevated total S1PR3 plasma concentrations (> 251 pg/ml) were linked to sepsis and ALI mortality. In vitro EC exposure to barrier-disrupting agents induced S1PR3 nitration and the shedding of S1PR3-containing microparticles, which significantly reduced TER, consistent with increased permeability. These changes were attenuated by reduced S1PR3 expression (small interfering RNAs). These results suggest that microparticles containing nitrated S1PR3 shed into the circulation during inflammatory lung states, and represent a novel ALI biomarker linked to disease severity and outcome.
PMCID: PMC3547106  PMID: 22771388
acute lung injury; sphingosine-1–phosphate receptor–3; microparticles; nitration; biomarker
12.  Hydrogen Sulfide Attenuates Particulate Matter–Induced Human Lung Endothelial Barrier Disruption via Combined Reactive Oxygen Species Scavenging and Akt Activation 
Exposure to particulate air pollution is associated with increased cardiopulmonary morbidity and mortality, although the pathogenic mechanisms are poorly understood. We previously demonstrated that particulate matter (PM) exposure triggers massive oxidative stress in vascular endothelial cells (ECs), resulting in the loss of EC integrity and lung vascular hyperpermeability. We investigated the protective role of hydrogen sulfide (H2S), an endogenous gaseous molecule present in the circulation, on PM-induced human lung EC barrier disruption and pulmonary inflammation. Alterations in EC monolayer permeability, as reflected by transendothelial electrical resistance (TER), the generation of reactive oxygen species (ROS), and murine pulmonary inflammatory responses, were studied after exposures to PM and NaSH, an H2S donor. Similar to N-acetyl cysteine (5 mM), NaSH (10 μM) significantly scavenged PM-induced EC ROS and inhibited the oxidative activation of p38 mitogen-activated protein kinase. Concurrent with these events, NaSH (10 μM) activated Akt, which helps maintain endothelial integrity. Both of these pathways contribute to the protective effect of H2S against PM-induced endothelial barrier dysfunction. Furthermore, NaSH (20 mg/kg) reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in bronchoalveolar lavage fluids in a murine model of PM-induced lung inflammation. These data suggest a potentially protective role for H2S in PM-induced inflammatory lung injury and vascular hyperpermeability.
PMCID: PMC3488621  PMID: 22592920
particulate matter; hydrogen sulfide; endothelial permeability; Akt
13.  A Common Cortactin Gene Variation Confers Differential Susceptibility to Severe Asthma 
Genetic epidemiology  2008;32(8):757-766.
Genomic regions with replicated linkage to asthma-related phenotypes likely harbor multiple susceptibility loci with relatively minor effects on disease susceptibility. The 11q13 chromosomal region has repeatedly been linked to asthma with five genes residing in this region with reported replicated associations. Cortactin, an actin-binding protein encoded by the CTTN gene in 11q13, constitutes a key regulator of cytoskeletal dynamics and contractile cell machinery, events facilitated by interaction with myosin light chain kinase; encoded by MYLK, a gene we recently reported as associated with severe asthma in African Americans. To evaluate potential association of CTTN gene variation with asthma susceptibility, CTTN exons and flanking regions were re-sequenced in 48 non-asthmatic multiethnic samples, leading to selection of nine tagging polymorphisms for case-control association studies in individuals of European and African descent. After ancestry adjustments, an intronic variant (rs3802780) was significantly associated with severe asthma (odds ratio [OR]: 1.71; 95% confidence interval [CI]: 1.20-2.43; p = 0.003) in a joint analysis. Further analyses evidenced independent and additive effects of CTTN and MYLK risk variants for severe asthma susceptibility in African Americans (accumulated OR: 2.93, 95% CI: 1.40-6.13, p = 0.004). These data suggest that CTTN gene variation may contribute to severe asthma and that the combined effects of CTTN and MYLK risk polymorphisms may further increase susceptibility to severe asthma in African Americans harboring both genetic variants.
PMCID: PMC3774307  PMID: 18521921
CTTN; MLCK; cytoskeleton; SNP; asthma
Cellular signalling  2009;21(12):1945-1960.
Sphingosine-1-phosphate (S1P), a lipid growth factor, is critical to the maintenance and enhancement of vascular barrier function via processes highly dependent upon cell membrane raft-mediated signaling events. Anti-phosphotyrosine 2 dimensional gel electrophoresis (2-DE) immunoblots confirmed that disruption of membrane rafts formation (via methyl-β-cyclodextrin) inhibits S1P-induced protein tyrosine phosphorylation. To explore S1P-induced dynamic changes in membrane rafts, we used 2-D techniques to define proteins within detergent-resistant cell membrane rafts which are differentially expressed in S1P-challenged (13M, 5 min) human pulmonary artery endothelial cells (EC), with 57 protein spots exhibiting >3-fold change. S1P-induced the recruitment of over 20 cell membrane raft proteins exhibiting increasing levels of tyrosine phosphorylation including known barrier-regulatory proteins such as focal adhesion kinase (FAK), cortactin, p85α phosphatidylinositol 3-kinase (p85αPI3K), myosin light chain kinase (nmMLCK), filamin A/C, and the non-receptor tyrosine kinase, c-Abl. Reduced expression of either FAK, MLCK, cortactin, filamin A or filamin C by siRNA transfection significantly attenuated S1P-induced EC barrier enhancement. Furthermore, S1P induced cell membrane raft components, p-caveolin-1 and glycosphingolipid (GM1), to the plasma membrane and enhanced co-localization of membrane rafts with p-caveolin-1 and p-nmMLCK. These results suggest that S1P induces both the tyrosine phosphorylation and recruitment of key actin cytoskeletal proteins to membrane rafts, resulting in enhanced human EC barrier function.
PMCID: PMC3758232  PMID: 19755153
endothelial cells; cell membrane rafts; 2-DE; Mass spectrometry; sphingosine 1-phosphate (S1P)
15.  Protective Effects of High-Molecular Weight Polyethylene Glycol (PEG) in Human Lung Endothelial Cell Barrier Regulation: Role of Actin Cytoskeletal Rearrangement 
Microvascular research  2008;77(2):174-186.
Acute lung injury represents the result of multiple pathways initiated by local or systemic insults and is characterized by profound vascular permeability, pulmonary edema, and life-threatening respiratory failure. Permeability-reducing therapies are of potential clinical utility but are currently unavailable. We hypothesized that polyethylene glycol (PEG) compounds, inert and non-toxic polymers that serve as a surrogate mucin lining in intestinal epithelium, may attenuate agonist-mediated lung endothelial cell (EC) barrier dysfunction. High molecular weight PEG (PEG15-20) produced rapid, dose-dependent increases in transendothelial electrical resistance (TER) in human lung endothelium cultured on gold microelectrodes, reflecting increased paracellular integrity. The maximal effective concentration of 8% PEG induced a sustained 125% increase in TER (40 hrs), results similar to barrier-enhancing agonists such as sphingosine 1-phosphate (40% increase in TER). Maximal PEG barrier enhancement was achieved at 45–60 min and PEG effectively reversed both thrombin- and LPS-induced EC barrier dysfunction. Consistent with the increase in TER, immunofluorescent studies demonstrated that PEG produced significant cytoskeletal rearrangement with formation of well-defined cortical actin rings and lamellipodia containing the actin-binding proteins, cortactin and MLCK, known participants in cell-matrix and cell-cell junctional adhesion. Finally, PEG challenge induced rapid alterations in levels of MAP kinase and MLC phosphorylation. In summary, PEG joins a number of EC barrier-regulatory agents which rapidly activate barrier-enhancing signal transduction pathways which target the cytoskeleton and provides a potential therapeutic strategy in inflammatory lung injury.
PMCID: PMC3736723  PMID: 19121327
PEG; LPS; thrombin; endothelium; barrier function
16.  HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption 
Microvascular research  2010;81(2):189-197.
Acute lung injury (ALI) results from loss of alveolar-capillary barrier integrity and the evolution of high-permeability pulmonary edema resulting in alveolar flooding and significant morbidity and mortality. HMGB1 is a late mediator of sepsis which uniquely participates in the evolution of sepsis and sepsis-induced ALI. The molecular events by which HMGB1 contributes to ALI remain poorly characterized. We characterized the role of HMGB1 in endothelial cell (EC) cytoskeletal rearrangement and vascular permeability, events essential to paracellular gap formation and barrier dysfunction characteristic of ALI. Initial experiments demonstrated HMGB1-mediated dose-dependent (5–20 μg/ml) decreases in transendothelial cell electrical resistance (TER) in human pulmonary artery EC, a reflection of loss of barrier integrity. Furthermore, HMGB1 produced dose-dependent increases in paracellular gap formation in concert with loss of peripheral organized actin fibers, dissociation of cell-cell junctional cadherins, and development of central stress fibers, a phenotypic change associated with increased contractile activity and increased EC permeability. Using siRNA strategies directed against known HMGB1 receptors (RAGE, TLR2, TLR4), we systematically determined that the receptor for advanced glycation end products (RAGE) is the primary receptor signaling HMGB1-induced TER decreases and paracellular gap formation via p38 MAP kinase activation and phosphorylation of the actin-binding protein, Hsp27. These studies add to understanding of HMGB1-induced inflammatory events and vascular barrier disruption and offer the potential for clinical intervention in sepsis-induced ALI.
PMCID: PMC3678727  PMID: 21146549
HMGB1; RAGE; acute lung injury; endothelium; MAP kinase; Hsp27
17.  Integrating genomic and clinical medicine: Searching for susceptibility genes in complex lung diseases 
The integration of molecular, genomic, and clinical medicine in the post-genome era provides the promise of novel information on genetic variation and pathophysiologic cascades. The current challenge is to translate these discoveries rapidly into viable biomarkers that identify susceptible populations and into the development of precisely targeted therapies. In this article, we describe the application of comparative genomics, microarray platforms, genetic epidemiology, statistical genetics, and bioinformatic approaches within examples of complex pulmonary pathobiology. Our search for candidate genes, which are gene variations that drive susceptibility to and severity of enigmatic acute and chronic lung disorders, provides a logical framework to understand better the evolution of genomic medicine. The dissection of the genetic basis of complex diseases and the development of highly individualized therapies remain lofty but achievable goals.
PMCID: PMC3616408  PMID: 18355765
18.  Conflicting Physiological and Genomic Cardiopulmonary Effects of Recruitment Maneuvers in Murine Acute Lung Injury 
Low tidal volume ventilation, although promoting atelectasis, is a protective strategy against ventilator-induced lung injury. Deep inflation (DI) recruitment maneuvers restore lung volumes, but potentially compromise lung parenchymal and vascular function via repetitive overdistention. Our objective was to examine cardiopulmonary physiological and transcriptional consequences of recruitment maneuvers. C57/BL6 mice challenged with either PBS or LPS via aspiration were placed on mechanical ventilation (5 h) using low tidal volume inflation (TI; 8 μl/g) alone or in combination with intermittent DIs (0.75 ml twice/min). Lung mechanics during TI ventilation significantly deteriorated, as assessed by forced oscillation technique and pressure–volume curves. DI mitigated the TI-induced alterations in lung mechanics, but induced a significant rise in right ventricle systolic pressures and pulmonary vascular resistances, especially in LPS-challenged animals. In addition, DI exacerbated the LPS-induced genome-wide lung inflammatory transcriptome, with prominent dysregulation of a gene cluster involving vascular processes, as well as increases in cytokine concentrations in bronchoalveolar lavage fluid and plasma. Gene ontology analyses of right ventricular tissue expression profiles also identified inflammatory signatures, as well as apoptosis and membrane organization ontologies, as potential elements in the response to acute pressure overload. Our results, although confirming the improvement in lung mechanics offered by DI, highlight a detrimental impact in sustaining inflammatory response and exacerbating lung vascular dysfunction, events contributing to increases in right ventricle afterload. These novel insights should be integrated into the clinical assessment of the risk/benefit of recruitment maneuver strategies.
PMCID: PMC3359949  PMID: 22135358
mechanical ventilation; microarray; pulmonary hypertension; right ventricle; acute lung injury
19.  Type 2 Deiodinase and Host Responses of Sepsis and Acute Lung Injury 
The role of thyroid hormone metabolism in clinical outcomes of the critically ill remains unclear. Using preclinical models of acute lung injury (ALI), we assessed the gene and protein expression of type 2 deiodinase (DIO2), a key driver for synthesis of biologically active triiodothyronine, and addressed potential association of DIO2 genetic variants with ALI in a multiethnic cohort. DIO2 gene and protein expression levels in murine lung were validated by microarrays and immunoblotting. Lung injury was assessed by levels of bronchoalveolar lavage protein and leukocytes. Single-nucleotide polymorphisms were genotyped and ALI susceptibility association assessed. Significant increases in both DIO2 gene and D2 protein expression were observed in lung tissues from murine ALI models (LPS- and ventilator-induced lung injury), with expression directly increasing with the extent of lung injury. Mice with reduced levels of DIO2 expression (by silencing RNA) demonstrated reduced thyroxine levels in plasma and increased lung injury (increased bronchoalveolar lavage protein and leukocytes), suggesting a protective role for DIO2 in ALI. The G (Ala) allele of the Thr92Ala coding single-nucleotide polymorphism (rs225014) was protective in severe sepsis and severe sepsis–associated ALI after adjustments for age, sex, and genetic ancestry in a logistic regression model in European Americans. Our studies indicate that DIO2 is a novel ALI candidate gene, the nonsynonymous Thr92Ala coding variant of which confers ALI protection. Increased DIO2 expression may dampen the ALI inflammatory response, thereby strengthening the premise that thyroid hormone metabolism is intimately linked to the integrated response to inflammatory injury in critically ill patients.
PMCID: PMC3262665  PMID: 21685153
acute respiratory distress syndrome; hypothyroidism; mechanical ventilation; sepsis
20.  Functional variants of sphingosine-1-phosphate receptor 1 gene associate with asthma susceptibility 
The genetic mechanisms underlying asthma remain unclear. Increased permeability of the microvasculature is a feature of asthma and the sphingosine-1-phosphate receptor, S1PR1, is an essential participant regulating lung vascular integrity and responses to lung inflammation.
We explored the contribution of polymorphisms in the S1PR1 gene (S1PR1) to asthma susceptibility.
A combination of gene re-sequencing for SNP discovery, case-control association, functional evaluation of associated SNPs, and protein immunochemistry studies was utilized.
Immunohistochemistry studies demonstrated significantly decreased S1PR1 protein expression in pulmonary vessels in asthmatic lungs compared to non-asthmatic individuals (p<0.05). Direct DNA sequencing of 27 multiethnic samples identified 39 S1PR1 variants (18 novel SNPs). Association studies were performed based on genotyping results from cosmopolitan tagging SNPs in three case-control cohorts from Chicago and New York totaling 1061 subjects (502 cases and 559 controls). Promoter SNP rs2038366 (−1557G/T) was found to be associated with asthma (p=0.03) in European Americans. In African Americans, an association was found for both asthma and severe asthma for intronic SNP rs3753194 (c.−164+170A/G) (p=0.006 and p=0.040, respectively) and for promoter SNP rs59317557 (−532C/G) with severe asthma (p=0.028). Consistent with predicted in silico functionality, alleles of promoter SNPs rs2038366 (−1557G/T) and rs59317557 (−532C/G) influenced the activity of a luciferase S1PR1 reporter vector in transfected endothelial cells exposed to growth factors (EGF, PDGF, VEGF) known to be increased in asthmatic airways.
These data provide strong support for a role for S1PR1 gene variants in asthma susceptibility and severity.
Clinical Implications
Our results indicate S1PR1 is a novel asthma candidate gene and an attractive target for future therapeutic strategies.
Capsule summary
This study identified novel polymorphisms in S1PR1, revealed the functional implications of S1PR1 genetic variants in different populations, and their association with asthma susceptibility and severity.
PMCID: PMC3495167  PMID: 20624651
asthma; sphingosine-1-phosphate receptor 1; single nucleotide polymorphism; promoter activity
21.  A Sphingosine 1–Phosphate 1 Receptor Agonist Modulates Brain Death–Induced Neurogenic Pulmonary Injury 
Lung transplantation remains the only viable therapy for patients with end-stage lung disease. However, the full utilization of this strategy is severely compromised by a lack of donor lung availability. The vast majority of donor lungs available for transplantation are from individuals after brain death (BD). Unfortunately, the early autonomic storm that accompanies BD often results in neurogenic pulmonary edema (NPE), producing varying degrees of lung injury or leading to primary graft dysfunction after transplantation. We demonstrated that sphingosine 1–phosphate (S1P)/analogues, which are major barrier-enhancing agents, reduce vascular permeability via the S1P1 receptor, S1PR1. Because primary lung graft dysfunction is induced by lung vascular endothelial cell barrier dysfunction, we hypothesized that the S1PR1 agonist, SEW-2871, may attenuate NPE when administered to the donor shortly after BD. Significant lung injury was observed after BD, with increases of approximately 60% in bronchoalveolar lavage (BAL) total protein, cell counts, and lung tissue wet/dry (W/D) weight ratios. In contrast, rats receiving SEW-2871 (0.1 mg/kg) 15 minutes after BD and assessed after 4 hours exhibited significant lung protection (∼ 50% reduction, P = 0.01), as reflected by reduced BAL protein/albumin, cytokines, cellularity, and lung tissue wet/dry weight ratio. Microarray analysis at 4 hours revealed a global impact of both BD and SEW on lung gene expression, with a differential gene expression of enriched immune-response/inflammation pathways across all groups. Overall, SEW served to attenuate the BD-mediated up-regulation of gene expression. Two potential biomarkers, TNF and chemokine CC motif receptor-like 2, exhibited gene array dysregulation. We conclude that SEW-2871 significantly attenuates BD-induced lung injury, and may serve as a potential candidate to improve human donor availability.
PMCID: PMC3262681  PMID: 21617203
neurogenic pulmonary edema; lung injury; sphingosine 1–phosphate; sphingolipids; lung transplant donors
22.  Genomic Investigations into Acute Inflammatory Lung Injury 
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome, are complex illnesses involving the interplay of both environmental (such as mechanical ventilation) and genetic factors. To understand better the underlying mechanisms of pathogenesis associated with ALI, we recently identified several candidate genes by global expression profiling in preclinical models of ALI and relevant single-nucleotide polymorphisms. We summarize here several strategies successfully used to identify novel ALI candidate genes and detail the validation of variants in these genes as contributing factors to ALI pathobiology, conclusions based on functional analyses, and specific genetic association studies conducted in ALI cohorts. Continued insights into ALI pathogenesis and identification of genetic variants, which confer ALI risk and severity, promise to reveal novel molecular therapeutic targets that can be translated into personalized treatments to reduce the very high, unacceptable mortality of this disorder.
PMCID: PMC3131835  PMID: 21543796
acute lung injury; SNP; microarray; PBEF; inflammation
23.  Simvastatin Attenuates Radiation-Induced Murine Lung Injury and Dysregulated Lung Gene Expression 
Novel therapies are desperately needed for radiation-induced lung injury (RILI), which, despite aggressive corticosteroid therapy, remains a potentially fatal and dose-limiting complication of thoracic radiotherapy. We assessed the utility of simvastatin, an anti-inflammatory and lung barrier–protective agent, in a dose- and time-dependent murine model of RILI (18–(25 Gy). Simvastatin reduced multiple RILI indices, including vascular leak, leukocyte infiltration, and histological evidence of oxidative stress, while reversing RILI-associated dysregulated gene expression, including p53, nuclear factor–erythroid-2–related factor, and sphingolipid metabolic pathway genes. To identify key regulators of simvastatin-mediated RILI protection, we integrated whole-lung gene expression data obtained from radiated and simvastatin-treated mice with protein–protein interaction network analysis (single-network analysis of proteins). Topological analysis of the gene product interaction network identified eight top-prioritized genes (Ccna2a, Cdc2, fcer1 g, Syk, Vav3, Mmp9, Itgam, Cd44) as regulatory nodes within an activated RILI network. These studies identify the involvement of specific genes and gene networks in RILI pathobiology, and confirm that statins represent a novel strategy to limit RILI.
PMCID: PMC3095940  PMID: 20508068
radiation pneumonitis; lung vascular permeability; simvastatin; gene dysregulation; protein–protein interaction
24.  Non–Muscle Myosin Light Chain Kinase Isoform Is a Viable Molecular Target in Acute Inflammatory Lung Injury 
Acute lung injury (ALI) and mechanical ventilator-induced lung injury (VILI), major causes of acute respiratory failure with elevated morbidity and mortality, are characterized by significant pulmonary inflammation and alveolar/vascular barrier dysfunction. Previous studies highlighted the role of the non–muscle myosin light chain kinase isoform (nmMLCK) as an essential element of the inflammatory response, with variants in the MYLK gene that contribute to ALI susceptibility. To define nmMLCK involvement further in acute inflammatory syndromes, we used two murine models of inflammatory lung injury, induced by either an intratracheal administration of lipopolysaccharide (LPS model) or mechanical ventilation with increased tidal volumes (the VILI model). Intravenous delivery of the membrane-permeant MLC kinase peptide inhibitor, PIK, produced a dose-dependent attenuation of both LPS-induced lung inflammation and VILI (∼50% reductions in alveolar/vascular permeability and leukocyte influx). Intravenous injections of nmMLCK silencing RNA, either directly or as cargo within angiotensin-converting enzyme (ACE) antibody–conjugated liposomes (to target the pulmonary vasculature selectively), decreased nmMLCK lung expression (∼70% reduction) and significantly attenuated LPS-induced and VILI-induced lung inflammation (∼40% reduction in bronchoalveolar lavage protein). Compared with wild-type mice, nmMLCK knockout mice were significantly protected from VILI, with significant reductions in VILI-induced gene expression in biological pathways such as nrf2-mediated oxidative stress, coagulation, p53-signaling, leukocyte extravasation, and IL-6–signaling. These studies validate nmMLCK as an attractive target for ameliorating the adverse effects of dysregulated lung inflammation.
PMCID: PMC3028257  PMID: 20139351
endotoxin/lipopolysaccharide; nmMLCK; mice; lung injury; endothelial barrier
25.  Differential Effects of Sphingosine 1–Phosphate Receptors on Airway and Vascular Barrier Function in the Murine Lung 
The therapeutic options for ameliorating the profound vascular permeability, alveolar flooding, and organ dysfunction that accompanies acute inflammatory lung injury (ALI) remain limited. Extending our previous finding that the intravenous administration of the sphingolipid angiogenic factor, sphingosine 1–phosphate (S1P), attenuates inflammatory lung injury and vascular permeability via ligation of S1PR1, we determine that a direct intratracheal or intravenous administration of S1P, or a selective S1P receptor (S1PR1) agonist (SEW-2871), produces highly concentration-dependent barrier-regulatory responses in the murine lung. The intratracheal or intravenous administration of S1P or SEW-2871 at < 0.3 mg/kg was protective against LPS-induced murine lung inflammation and permeability. However, intratracheal delivery of S1P at 0.5 mg/kg (for 2 h) resulted in significant alveolar–capillary barrier disruption (with a 42% increase in bronchoalveolar lavage protein), and produced rapid lethality when delivered at 2 mg/kg. Despite the greater selectivity for S1PR1, intratracheally delivered SEW-2871 at 0.5 mg/kg also resulted in significant alveolar–capillary barrier disruption, but was not lethal at 2 mg/kg. Consistent with the S1PR1 regulation of alveolar/vascular barrier function, wild-type mice pretreated with the S1PR1 inverse agonist, SB-649146, or S1PR1+/− mice exhibited reduced S1P/SEW-2871–mediated barrier protection after challenge with LPS. In contrast, S1PR2−/− knockout mice as well as mice with reduced S1PR3 expression (via silencing S1PR3-containing nanocarriers) were protected against LPS-induced barrier disruption compared with control mice. These studies underscore the potential therapeutic effects of highly selective S1PR1 receptor agonists in reducing inflammatory lung injury, and highlight the critical role of the S1P delivery route, S1PR1 agonist concentration, and S1PR1 expression in target tissues.
PMCID: PMC2951871  PMID: 19749179
SEW-2871; LPS; SB-649146; S1P; lung edema

Results 1-25 (118)