PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-22 (22)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Bitter and sweet taste receptors regulate human upper respiratory innate immunity 
The Journal of Clinical Investigation  2014;124(3):1393-1405.
Bitter taste receptors (T2Rs) in the human airway detect harmful compounds, including secreted bacterial products. Here, using human primary sinonasal air-liquid interface cultures and tissue explants, we determined that activation of a subset of airway T2Rs expressed in nasal solitary chemosensory cells activates a calcium wave that propagates through gap junctions to the surrounding respiratory epithelial cells. The T2R-dependent calcium wave stimulated robust secretion of antimicrobial peptides into the mucus that was capable of killing a variety of respiratory pathogens. Furthermore, sweet taste receptor (T1R2/3) activation suppressed T2R-mediated antimicrobial peptide secretion, suggesting that T1R2/3-mediated inhibition of T2Rs prevents full antimicrobial peptide release during times of relative health. In contrast, during acute bacterial infection, T1R2/3 is likely deactivated in response to bacterial consumption of airway surface liquid glucose, alleviating T2R inhibition and resulting in antimicrobial peptide secretion. We found that patients with chronic rhinosinusitis have elevated glucose concentrations in their nasal secretions, and other reports have shown that patients with hyperglycemia likewise have elevated nasal glucose levels. These data suggest that increased glucose in respiratory secretions in pathologic states, such as chronic rhinosinusitis or hyperglycemia, promotes tonic activation of T1R2/3 and suppresses T2R-mediated innate defense. Furthermore, targeting T1R2/3-dependent suppression of T2Rs may have therapeutic potential for upper respiratory tract infections.
doi:10.1172/JCI72094
PMCID: PMC3934184  PMID: 24531552
2.  The Microbiome of the Middle Meatus in Healthy Adults  
PLoS ONE  2013;8(12):e85507.
Rhinitis and rhinosinusitis are multifactorial disease processes in which bacteria may play a role either in infection or stimulation of the inflammatory process. Rhinosinusitis has been historically studied with culture-based techniques, which have implicated several common pathogens in disease states. More recently, the NIH Human Microbiome Project has examined the microbiome at a number of accessible body sites, and demonstrated differences among healthy and diseased patients. Recent DNA-based sinus studies have suggested that healthy sinuses are not sterile, as was previously believed, but the normal sinonasal microbiome has yet to be thoroughly examined. Middle meatus swab specimens were collected from 28 consecutive patients presenting with no signs or symptoms of rhinosinusitis. Bacterial colonization was assessed in these specimens using quantitative PCR and 16S rRNA pyrosequencing. All subjects were positive for bacterial colonization of the middle meatus. Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes were the most prevalent and abundant microorganisms detected. Rich and diverse bacterial assemblages are present in the sinonasal cavity in the normal state, including opportunistic pathogens typically found in the nasopharynx. This work helps establish a baseline for understanding how the sinonasal microbiome may impact diseases of the upper airways.
doi:10.1371/journal.pone.0085507
PMCID: PMC3875580  PMID: 24386477
3.  The Development of Nasal Polyp Disease Involves Early Nasal Mucosal Inflammation and Remodelling 
PLoS ONE  2013;8(12):e82373.
Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by both a chronic inflammation and tissue remodelling; as indicated by extracellular matrix protein deposition, basement membrane thickening, goblet cell hyperplasia and subepithelial edema, with reduced vessels and glands. Although remodelling is generally considered to be consequence of persistent inflammation, the chronological order and relationship between inflammation and remodelling in polyp development is still not clear. The aim of our study was therefore to investigate the pathological features prevalent in the development of nasal polyps and to elucidate the chronological order and relationship between inflammation and remodelling, by comparing specific markers of inflammation and remodelling in early stage nasal polyps confined to the middle turbinate (refer to as middle turbinate CRSwNP) obtained from 5 CRSwNP patients with bilateral polyposis, mature ethmoidal polyps from 6 CRSwNP patients, and normal nasal mucosal tissue from 6 control subjects. Middle turbinate CRSwNP demonstrated significantly more severe epithelial loss compared to mature ethmoidal polyps and normal nasal mucosa. The epithelial cell junction molecules E-cadherin, ZO-1 and occludin were also expressed in significantly lower amounts in mature ethmoidal polyps compared to healthy mucosa. Middle turbinate CRSwNP were further characterized by significantly increased numbers of subepithelial eosinophils and M2 type macrophages, with a distinct lack of collagen and deposition of fibronectin in polyp part. In contrast, the turbinate area of the middle turbinate CRSwNP was characterized by an increase in TGF-β activated myofibroblasts expressing α-SMA and vimentin, an increase in the number of pSmad2 positive cells, as well as increased deposition of collagen. These findings suggest a complex network of processes in the formation of CRSwNP; including gross epithelial damage and repair reactions, eosinophil and macrophage cell infiltration, and tissue remodelling. Furthermore, remodelling appears to occur in parallel, rather than subsequent to inflammation.
doi:10.1371/journal.pone.0082373
PMCID: PMC3858290  PMID: 24340021
4.  Resveratrol Enhances Airway Surface Liquid Depth in Sinonasal Epithelium by Increasing Cystic Fibrosis Transmembrane Conductance Regulator Open Probability 
PLoS ONE  2013;8(11):e81589.
Background
Chronic rhinosinusitis engenders enormous morbidity in the general population, and is often refractory to medical intervention. Compounds that augment mucociliary clearance in airway epithelia represent a novel treatment strategy for diseases of mucus stasis. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR). The objectives of the present study were to test resveratrol, a strong potentiator of CFTR channel open probability, in preparation for a clinical trial of mucociliary activators in human sinus disease.
Methods
Primary sinonasal epithelial cells, immortalized bronchoepithelial cells (wild type and F508del CFTR), and HEK293 cells expressing exogenous human CFTR were investigated by Ussing chamber as well as patch clamp technique under non-phosphorylating conditions. Effects on airway surface liquid depth were measured using confocal laser scanning microscopy. Impact on CFTR gene expression was measured by quantitative reverse transcriptase polymerase chain reaction.
Results
Resveratrol is a robust CFTR channel potentiator in numerous mammalian species. The compound also activated temperature corrected F508del CFTR and enhanced CFTR-dependent chloride secretion in human sinus epithelium ex vivo to an extent comparable to the recently approved CFTR potentiator, ivacaftor. Using inside out patches from apical membranes of murine cells, resveratrol stimulated an ~8 picosiemens chloride channel consistent with CFTR. This observation was confirmed in HEK293 cells expressing exogenous CFTR. Treatment of sinonasal epithelium resulted in a significant increase in airway surface liquid depth (in µm: 8.08+/-1.68 vs. 6.11+/-0.47,control,p<0.05). There was no increase CFTR mRNA.
Conclusion
Resveratrol is a potent chloride secretagogue from the mucosal surface of sinonasal epithelium, and hydrates airway surface liquid by increasing CFTR channel open probability. The foundation for a clinical trial utilizing resveratrol as a therapeutic intervention to increase mucociliary transport and airway surface liquid hydration in sinus disease is strongly supported by these findings.
doi:10.1371/journal.pone.0081589
PMCID: PMC3839872  PMID: 24282612
5.  Topical Drug Delivery in Chronic Rhinosinusitis Patients before and after Sinus Surgery Using Pulsating Aerosols 
PLoS ONE  2013;8(9):e74991.
Objectives
Chronic rhinosinusitis (CRS) is a common chronic disease of the upper airways and has considerable impact on quality of life. Topical delivery of drugs to the paranasal sinuses is challenging, therefore the rate of surgery is high. This study investigates the delivery efficiency of a pulsating aerosol in comparison to a nasal pump spray to the sinuses and the nose in healthy volunteers and in CRS patients before and after sinus surgery.
Methods
99mTc-DTPA pulsating aerosols were applied in eleven CRSsNP patients without nasal polyps before and after sinus surgery. In addition, pulsating aerosols were studied in comparison to nasal pump sprays in eleven healthy volunteers. Total nasal and frontal, maxillary and sphenoidal sinus aerosol deposition and lung penetration were assessed by anterior and lateral planar gamma camera imaging.
Results
In healthy volunteers nasal pump sprays resulted in 100% nasal, non-significant sinus and lung deposition, while pulsating aerosols resulted 61.3+/-8.6% nasal deposition and 38.7% exit the other nostril. 9.7+/-2.0 % of the nasal dose penetrated into maxillary and sphenoidal sinuses. In CRS patients, total nasal deposition was 56.7+/-13.3% and 46.7+/-12.7% before and after sinus surgery, respectively (p<0.01). Accordingly, maxillary and sphenoidal sinus deposition was 4.8+/-2.2% and 8.2+/-3.8% of the nasal dose (p<0.01). Neither in healthy volunteers nor in CRS patients there was significant dose in the frontal sinuses.
Conclusion
In contrast to nasal pump sprays, pulsating aerosols can deliver significant doses into posterior nasal spaces and paranasal sinuses, providing alternative therapy options before and after sinus surgery. Patients with chronic lung diseases based on clearance dysfunction may also benefit from pulsating aerosols, since these diseases also manifest in the upper airways.
doi:10.1371/journal.pone.0074991
PMCID: PMC3770586  PMID: 24040372
6.  GABA and Glutamate are not colocalized in mossy fiber terminals of developing rodent hippocampus 
Brain research  2012;1474:40-49.
It has been hypothesized that, in the developing rodent hippocampus, mossy fiber terminals release GABA together with glutamate. Here, we used transgenic glutamic acid decarboxylase-67 (GAD67)-GFP expressing mice and multi-label immunohistochemistry to address whether glutamatergic and GABAergic markers are colocalized. We demonstrate that in the dentate gyrus, interneurons positive for GABA/GAD are sparsely distributed along the edge of the hilus, in a different pattern than the densely packed granule cells. Co-staining for synaptophysin and vesicular glutamate transporter1 (VGLUT1) in postnatal day 14 brain sections from both mice and rats identified mossy fiber terminals as a group of large (2 – 5μm in diameter) VGLUT1-positive excitatory presynaptic terminals in the stratum lucidum of area CA3a/b. Furthermore, co-staining for synaptophysin and vesicular GABA transporter (VGAT) revealed a group of small-sized (~0.5μm in diameter) inhibitory presynaptic terminals in the same area where identified mossy fiber terminals were present. The two types of terminals appeared to be mutually exclusive, and showed no colocalization. Thus, our results do not support the hypothesis that GABA is released as a neurotransmitter from mossy fiber terminals during development.
doi:10.1016/j.brainres.2012.07.042
PMCID: PMC3695404  PMID: 22842523
granule cell; vesicular glutamate transporter; vesicular GABA transporter; immunofluorescence; synaptic button
7.  Surfactants in the management of rhinopathologies 
Background:
Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant chronic rhinosinusitis (CRS).
Methods:
A review of the literature was performed.
Results:
The data from three different surfactants have been examined in this review: citric acid zwitterionic surfactant (CAZS; Medtronic ENT, Jacksonville FL), Johnson's Baby Shampoo (Johnson & Johnson, New Brunswick NJ), and SinuSurf (NeilMed Pharmaceuticals, Santa Rosa, CA). Dilute surfactant therapy shows in vitro antimicrobial effects with modest inhibition of bacterial biofilm formation. In patients with CRS, surfactants may improve symptoms, most likely through its mucolytic effects. In addition, surfactants have several distinct potential benefits including their ability to improve an irrigant's penetration of the nonoperated sinus and their synergistic effects with antibiotics. However, surfactants potential for nasal irritation and possible transient ciliotoxicity may limit their use.
Conclusion:
Recent data suggest a possible therapeutic role of surfactants in treating rhinopathologies associated with mucostasis. Further investigation, including a standardization of surfactant formulations, is warranted to further elucidate the potential benefits and drawbacks of this therapy.
doi:10.2500/ajra.2013.27.3873
PMCID: PMC3901440  PMID: 23710951
Biofilms; cilia; contamination; mucociliary clearance; nasal irrigation; sinusitis; surfactants; surface tension
8.  Characterisation of Patients Receiving Moxifloxacin for Acute Bacterial Rhinosinusitis in Clinical Practice: Results from an International, Observational Cohort Study 
PLoS ONE  2013;8(4):e61927.
We conducted a prospective, non-controlled, multi-centre Phase IV observational cohort study of patients with acute bacterial rhinosinusitis who were treated with moxifloxacin in clinical practice in 19 countries in Asia Pacific, Europe and the Middle East. With the data collected we evaluated the presentation and course of the current disease episode, particularly in terms of the principal clinical signs and symptoms of acute rhinosinusitis and diagnostic procedures. A final assessment of moxifloxacin therapy was made to evaluate the impact of the sinusitis episode on activities of daily life and on sleep disturbance, and to evaluate the clinical outcome of treatment. A total of 7,090 patients were enrolled, of whom 3909 (57.6%) were included in the valid for clinical outcome and safety population. Regional differences were observed in the main symptoms of acute rhinosinusitis and, according to several characteristics, disease episodes appeared to be more severe in patients in Europe than in the Asia Pacific or Middle East regions. The sinusitis episode impacted on daily living for mean (SD) periods of 3.6 (3.2), 4.6 (3.9) and 3.1 (3.0) days and disturbed sleep for 3.6 (3.2), 4.6 (3.9) and 3.1 (3.0) nights in the Asia Pacific, Europe and Middle East regions, respectively. With moxifloxacin treatment, the mean (SD) time to improvement of symptoms was 3.0 (1.5), 3.4 (1.6) and 3.2 (1.5) days, and the time to resolution of symptoms was 4.8 (2.6) days, 5.7 (2.4) days and 5.5 (2.5) days, in the Asia Pacific, Europe and Middle East regions, respectively. In conclusion, acute rhinosinusitis remains a substantial health burden with significant impact on patients’ quality of life, and there are differences between global regions in the clinical presentation, diagnosis and clinical course of disease episodes. Moxifloxacin was an effective and well-tolerated treatment option in the overall population.
Registration: ClinicalTrials.gov Identifier: NCT00930488
doi:10.1371/journal.pone.0061927
PMCID: PMC3633984  PMID: 23626752
9.  Heterogeneity of Gene Expression in Murine Squamous Cell Carcinoma Development—The Same Tumor by Different Means 
PLoS ONE  2013;8(3):e57748.
Transformation is a complex process, involving many changes in the cell. In this work, we investigated the transcriptional changes that arose during the development of squamous cell carcinoma (SCC) in mice. Using microarray analysis, we looked at gene expression during different stages in cancer progression in 31 mice. By analyzing tumor progression in each mouse separately, we were able to define the global changes that were common to all 31 mice, as well as significant changes that occurred in fewer individuals. We found that different genes can contribute to the tumorigenic process in different mice, and that there are many ways to acquire the malignant properties defined by Hanahan and Weinberg as “hallmarks of cancer”. Eventually, however, all these changes lead to a very similar cancerous phenotype. The finding that gene expression is strongly heterogeneous in tumors that were induced by a standardized protocol in closely related mice underscores the need for molecular characterization of human tumors and personalized therapy.
doi:10.1371/journal.pone.0057748
PMCID: PMC3601100  PMID: 23526950
10.  T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection 
The Journal of Clinical Investigation  2012;122(11):4145-4159.
Innate and adaptive defense mechanisms protect the respiratory system from attack by microbes. Here, we present evidence that the bitter taste receptor T2R38 regulates the mucosal innate defense of the human upper airway. Utilizing immunofluorescent and live cell imaging techniques in polarized primary human sinonasal cells, we demonstrate that T2R38 is expressed in human upper respiratory epithelium and is activated in response to acyl-homoserine lactone quorum-sensing molecules secreted by Pseudomonas aeruginosa and other gram-negative bacteria. Receptor activation regulates calcium-dependent NO production, resulting in stimulation of mucociliary clearance and direct antibacterial effects. Moreover, common polymorphisms of the TAS2R38 gene were linked to significant differences in the ability of upper respiratory cells to clear and kill bacteria. Lastly, TAS2R38 genotype correlated with human sinonasal gram-negative bacterial infection. These data suggest that T2R38 is an upper airway sentinel in innate defense and that genetic variation contributes to individual differences in susceptibility to respiratory infection.
doi:10.1172/JCI64240
PMCID: PMC3484455  PMID: 23041624
11.  Pharmacologic Activation of the Innate Immune System to Prevent Respiratory Viral Infections 
Drugs that can rapidly inhibit respiratory infection from influenza or other respiratory pathogens are needed. One approach is to engage primary innate immune defenses against viral infection, such as activating the IFN pathway. In this study, we report that a small, cell-permeable compound called 5,6-di-methylxanthenone-4-acetic acid (DMXAA) can induce protection against vesicular stomatitis virus in vitro and H1N1 influenza A virus in vitro and in vivo through innate immune activation. Using the mouse C10 bronchial epithelial cell line and primary cultures of nasal epithelial cells, we demonstrate DMXAA activates the IFN regulatory factor-3 pathway leading to production of IFN-β and subsequent high-level induction of IFN-β–dependent proteins, such as myxovirus resistance 1 (Mx1) and 2′,5′-oligoadenylate synthetase 1 (OAS1). Mice treated with DMXAA intranasally elevate mRNA/protein expression of Mx1 and OAS1 in the nasal mucosa, trachea, and lung. When challenged intranasally with a lethal dose of H1N1 influenza A virus, DMXAA reduced viral titers in the lungs and protected 80% of mice from death, even when given at 24 hours before infection. These data show that agents, like DMXAA, that can directly activate innate immune pathways, such as the IFN regulatory factor-3/IFN-β system, in respiratory epithelial cells can be used to protect from influenza pneumonia and potentially in other respiratory viral infections. Development of this approach in humans could be valuable for protecting health care professionals and “first responders” in the early stages of viral pandemics or bioterror attacks.
doi:10.1165/rcmb.2010-0288OC
PMCID: PMC3265219  PMID: 21148741
innate immunity; interferon; influenza; pneumonia; bronchial epithelium
12.  Three Dimensional Assessment of the Pharyngeal Airway in Individuals with Non-Syndromic Cleft Lip and Palate 
PLoS ONE  2012;7(8):e43405.
Introduction
Children with cleft lip and palate (CLP) are known to have airway problems. Previous studies have shown that individuals with CLP have a 30% reduction in nasal airway size compared to non-cleft controls. No reports have been found on cross-sectional area and volume of the pharyngeal airway in clefts. Introduction of Cone-Beam CT (CBCT) and imaging software has facilitated generation of 3D images for assessment of the cross-sectional area and volume of the airway.
Objective
To assess the pharyngeal airway in individuals with CLP using CBCT by measuring volume and smallest cross-sectional areas and compare with 19 age- and sex-matched non-cleft controls.
Methods
Retrospective study of CBCT data of pre-adolescent individuals (N = 19, Mean age = 10.6, 7 females, 12 males, UCLP = 6, BCLP = 3) from the Center for Craniofacial Anomalies. Volumetric analysis was performed using image segmentation features in CB Works 3.0. Volume and smallest cross-sectional were studied in both groups. Seven measurements were repeated to verify reliability using Pearson correlation coefficient. Volume and cross-sectional area differences were analyzed using paired t-tests.
Results
The method was found to be reliable. Individuals with CLP did not exhibit smaller total airway volume and cross sectional area than non-CLP controls.
Conclusion
3D imaging using CBCT and CB Works is reliable for assessing airway volume. Previous studies have shown that the nasal airway is restricted in individuals with CLP. In our study, we found that the pharyngeal airway is not compromised in these individuals.
doi:10.1371/journal.pone.0043405
PMCID: PMC3430706  PMID: 22952677
13.  Mouse Dendritic Cells Pulsed with Capsular Polysaccharide Induce Resistance to Lethal Pneumococcal Challenge: Roles of T Cells and B Cells 
PLoS ONE  2012;7(6):e39193.
Mice are exceedingly sensitive to intra-peritoneal (IP) challenge with some virulent pneumococci (LD50 = 1 bacterium). To investigate how peripheral contact with bacterial capsular polysaccharide (PS) antigen can induce resistance, we pulsed bone marrow dendritic cells (BMDC) of C57BL/6 mice with type 4 or type 3 PS, injected the BMDC intra-foot pad (IFP) and challenged the mice IP with supra-lethal doses of pneumococci. We examined the responses of T cells and B cells in the draining popliteal lymph node and measured the effects on the bacteria in the peritoneum and blood. We now report that: 1) The PS co-localized with MHC molecules on the BMDC surface; 2) PS-specific T and B cell proliferation and IFNγ secretion was detected in the draining popliteal lymph nodes on day 4; 3) Type-specific resistance to lethal IP challenge was manifested only after day 5; 4) Type-specific IgM and IgG antibodies were detected in the sera of only some of the mice, but B cells were essential for resistance; 5) Control mice vaccinated with a single injection of soluble PS did not develop a response in the draining popliteal lymph node and were not protected; 6) Mice injected with unpulsed BMDC also did not resist challenge: In unprotected mice, pneumococci entered the blood shortly after IP inoculation and multiplied exponentially in both blood and peritoneum killing the mice within 20 hours. Mice vaccinated with PS-pulsed BMDC trapped the bacteria in the peritoneum. The trapped bacteria proliferated exponentially IP, but died suddenly at 18–20 hours. Thus, a single injection of PS antigen associated with intact BMDC is a more effective vaccine than the soluble PS alone. This model system provides a platform for studying novel aspects of PS-targeted vaccination.
doi:10.1371/journal.pone.0039193
PMCID: PMC3377650  PMID: 22723962
14.  Acquired cilia dysfunction in chronic rhinosinusitis 
Background:
Cilia are complex and powerful cellular structures of the respiratory mucosa that play a critical role in airway defense. Respiratory epithelium is lined with cilia that perform an integrated and coordinated mechanism called mucociliary clearance. Mucociliary clearance is the process by which cilia transport the mucus blanket overlying respiratory mucosa to the gastrointestinal tract for ingestion. It is the primary means by which the airway clears pathogens, allergens, debris, and toxins. The complex structure and regulatory mechanisms that dictate the form and function of normal cilia are not entirely understood, but it is clear that ciliary dysfunction results in impaired respiratory defense.
Methods:
A literature review of the current knowledge of cilia dysfunction in chronic rhinosinsusitis was conducted.
Results:
Ciliary dysfunction may be primary, the result of genetic mutations resulting in abnormal cilia structure, or, more commonly, secondary, the result of environmental, infectious, or inflammatory stimuli that disrupt normal motility or coordination. Patients with chronic rhinosinusitis (CRS) have been found to have impaired mucociliary clearance. Many biochemical, environmental, and mechanical stimuli have been shown to influence ciliary beat frequency, and common microbial pathogens of respiratory mucosa such as Pseudomonas aeruginosa and Haemophilus influenzae have developed toxins that appear to interrupt normal mucociliary function. Furthermore, inflammatory mediators known to be present in patients with CRS appear to impair secondarily mucociliary clearance.
Conclusion:
The goal of this article is to summarize the recent developments in the understanding of cilia dysfunction and mucociliary clearance in CRS.
doi:10.2500/ajra.2012.26.3716
PMCID: PMC3906518  PMID: 22391065
Calcium; chronic rhinosinusitis; cilia; cytokines; dynein; mucostasis; Pseudomonas
15.  Regulation of Virulence Gene Expression Resulting from Streptococcus pneumoniae and Nontypeable Haemophilus influenzae Interactions in Chronic Disease 
PLoS ONE  2011;6(12):e28523.
Chronic rhinosinusitis (CRS) is a common inflammatory disease of the sinonasal cavity mediated, in part, by polymicrobial communities of bacteria. Recent molecular studies have confirmed the importance of Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) in CRS. Here, we hypothesize that interaction between S. pneumoniae and NTHi mixed-species communities cause a change in bacterial virulence gene expression. We examined CRS as a model human disease to validate these polymicrobial interactions. Clinical strains of S. pneumoniae and NTHi were grown in mono- and co-culture in a standard biofilm assay. Reverse transcriptase real-time PCR (RTqPCR) was used to measure gene expression of key virulence factors. To validate these results, we investigated the presence of the bacterial RNA transcripts in excised human tissue from patients with CRS. Consequences of physical or chemical interactions between microbes were also investigated. Transcription of NTHi type IV pili was only expressed in co-culture in vitro, and expression could be detected ex vivo in diseased tissue. S. pneumoniae pyruvate oxidase was up-regulated in co-culture, while pneumolysin and pneumococcal adherence factor A were down-regulated. These results were confirmed in excised human CRS tissue. Gene expression was differentially regulated by physical contact and secreted factors. Overall, these data suggest that interactions between H. influenzae and S. pneumoniae involve physical and chemical mechanisms that influence virulence gene expression of mixed-species biofilm communities present in chronically diseased human tissue. These results extend previous studies of population-level virulence and provide novel insight into the importance of S. pneumoniae and NTHi in CRS.
doi:10.1371/journal.pone.0028523
PMCID: PMC3230614  PMID: 22162775
16.  Perceiving Nasal Patency through Mucosal Cooling Rather than Air Temperature or Nasal Resistance 
PLoS ONE  2011;6(10):e24618.
Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive.The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.
doi:10.1371/journal.pone.0024618
PMCID: PMC3192719  PMID: 22022361
17.  Association Pattern of Interleukin-1 Receptor-Associated Kinase-4 Gene Polymorphisms with Allergic Rhinitis in a Han Chinese Population 
PLoS ONE  2011;6(6):e21769.
Objective
Interleukin-1 receptor-associated kinase-4 (IRAK-4) encodes a kinase that is essential for NF-kB activation in Toll-like receptor and T-cell receptor signaling pathways, indicating a possible crosstalk between innate and acquired immunities. We attempted to determine whether the polymorphisms in the Interleukin-1 receptor-associated kinase-4 (IRAK-4) gene are associated with allergic rhinitis (AR) in the Han Chinese population.
Methods
A population of 379 patients with AR and 333 healthy controls was studied. Blood was drawn for DNA extraction and total serum immunoglobulin E (IgE). A total of 11 single nucleotide polymorphisms (SNPs) in IRAK-4 were selected and individually genotyped.
Results
Significant allelic differences between cases and controls were obtained for the SNP of rs3794262 in the IRAK-4 gene. In the stratified analysis for gender, two SNPs (rs4251431 and rs6582484) in males appeared as significant associations. Subgroup analysis for the presence of different allergen sensitivities displayed associations only in the house dust mite-allergic cohorts (rs3794262, rs4251481). None of the selected SNPs in IRAK-4 was associated with total IgE level. The haplotype analyisis indicated GCCTGCGA was significantly associated with AR. The SNP-SNP interaction information analysis indicated that the selected sets of polymorphisms had no synergistic effect.
Conclusions
Our findings did not support the potential contribution of the IRAK-4 gene to serum IgE levels. However, the results demonstrated a gender- and allergen-dependant association pattern between polymorphisms in IRAK-4 and AR in Chinese population.
doi:10.1371/journal.pone.0021769
PMCID: PMC3128076  PMID: 21738793
18.  Tobacco Smoke Mediated Induction of Sinonasal Microbial Biofilms 
PLoS ONE  2011;6(1):e15700.
Cigarette smokers and those exposed to second hand smoke are more susceptible to life threatening infection than non-smokers. While much is known about the devastating effect tobacco exposure has on the human body, less is known about the effect of tobacco smoke on the commensal and commonly found pathogenic bacteria of the human respiratory tract, or human respiratory tract microbiome. Chronic rhinosinusitis (CRS) is a common medical complaint, affecting 16% of the US population with an estimated aggregated cost of $6 billion annually. Epidemiologic studies demonstrate a correlation between tobacco smoke exposure and rhinosinusitis. Although a common cause of CRS has not been defined, bacterial presence within the nasal and paranasal sinuses is assumed to be contributory. Here we demonstrate that repetitive tobacco smoke exposure induces biofilm formation in a diverse set of bacteria isolated from the sinonasal cavities of patients with CRS. Additionally, bacteria isolated from patients with tobacco smoke exposure demonstrate robust in vitro biofilm formation when challenged with tobacco smoke compared to those isolated from smoke naïve patients. Lastly, bacteria from smoke exposed patients can revert to a non-biofilm phenotype when grown in the absence of tobacco smoke. These observations support the hypothesis that tobacco exposure induces sinonasal biofilm formation, thereby contributing to the conversion of a transient and medically treatable infection to a persistent and therapeutically recalcitrant condition.
doi:10.1371/journal.pone.0015700
PMCID: PMC3017060  PMID: 21253587
19.  Failure of Fluid Absorption in the Endolymphatic Sac Initiates Cochlear Enlargement that Leads to Deafness in Mice Lacking Pendrin Expression 
PLoS ONE  2010;5(11):e14041.
Mutations of SLC26A4 are among the most prevalent causes of hereditary deafness. Deafness in the corresponding mouse model, Slc26a4−/−, results from an abnormally enlarged cochlear lumen. The goal of this study was to determine whether the cochlear enlargement originates with defective cochlear fluid transport or with a malfunction of fluid transport in the connected compartments, which are the vestibular labyrinth and the endolymphatic sac. Embryonic inner ears from Slc26a4+/− and Slc26a4−/− mice were examined by confocal microscopy ex vivo or after 2 days of organ culture. Culture allowed observations of intact, ligated or partially resected inner ears. Cochlear lumen formation was found to begin at the base of the cochlea between embryonic day (E) 13.5 and 14.5. Enlargement was immediately evident in Slc26a4−/− compared to Slc26a4+/− mice. In Slc26a4+/− and Slc26a4−/− mice, separation of the cochlea from the vestibular labyrinth by ligation at E14.5 resulted in a reduced cochlear lumen. Resection of the endolymphatic sacs at E14.5 led to an enlarged cochlear lumen in Slc26a4+/− mice but caused no further enlargement of the already enlarged cochlear lumen in Slc26a4−/− mice. Ligation or resection performed later, at E17.5, did not alter the cochlea lumen. In conclusion, the data suggest that cochlear lumen formation is initiated by fluid secretion in the vestibular labyrinth and temporarily controlled by fluid absorption in the endolymphatic sac. Failure of fluid absorption in the endolymphatic sac due to lack of Slc26a4 expression appears to initiate cochlear enlargement in mice, and possibly humans, lacking functional Slc26a4 expression.
doi:10.1371/journal.pone.0014041
PMCID: PMC2984494  PMID: 21103348
20.  Screening for Staphylococcal Superantigen Genes Shows No Correlation with the Presence or the Severity of Chronic Rhinosinusitis and Nasal Polyposis 
PLoS ONE  2010;5(3):e9525.
Background
Staphylococcus aureus secretes numerous exotoxins which may exhibit superantigenic properties. Whereas the virulence of several of them is well documented, their exact biological effects are not fully understood. Exotoxins may influence the immune and inflammatory state of various organs, including the sinonasal mucosa: their possible involvement in chronic rhinosinusitis has been suggested and is one of the main trends in current research. The aim of this study was to investigate whether the presence of any of the 22 currently known staphylococcal exotoxin genes could be correlated with chronic rhinosinusitis.
Methodology/Principal Findings
We conducted a prospective, multi-centred European study, analysing 93 Staphylococcus aureus positive swabs taken from the middle meatus of patients suffering from chronic rhinosinusitis, with or without nasal polyposis, and controls. Strains were systematically tested for the presence of the 22 currently known exotoxin genes and genotyped according to their agr groups. No direct correlation was observed between chronic rhinosinusitis, with or without nasal polyposis, and either agr groups or the presence of the most studied exotoxins genes (egc, sea, seb, pvl, exfoliatins or tsst-1). However, genes for enterotoxins P and Q were frequently observed in nasal polyposis for the first time, but absent in the control group. The number of exotoxin genes detected was not statistically different among the 3 patient groups.
Conclusions/Significance
Unlike many previous studies have been suggesting, we did not find any evident correlation between staphylococcal exotoxin genes and the presence or severity of chronic rhinosinusitis with or without nasal polyposis.
doi:10.1371/journal.pone.0009525
PMCID: PMC2832699  PMID: 20221434
21.  Secondhand smoke inhibits both Cl- and K+ conductances in normal human bronchial epithelial cells 
Respiratory Research  2009;10(1):120.
Secondhand smoke (SHS) exposure is an independent risk factor for asthma, rhinosinusitis, and more severe respiratory tract infections in children and adults. Impaired mucociliary clearance with subsequent mucus retention contributes to the pathophysiology of each of these diseases, suggesting that altered epithelial salt and water transport may play an etiological role. To test the hypothesis that SHS would alter epithelial ion transport, we designed a system for in vitro exposure of mature, well-differentiated human bronchial epithelial cells to SHS. We show that SHS exposure inhibits cAMP-stimulated, bumetanide-sensitive anion secretion by 25 to 40% in a time-dependent fashion in these cells. Increasing the amount of carbon monoxide to 100 ppm from 5 ppm did not increase the amount of inhibition, and filtering SHS reduced inhibition significantly. It was determined that SHS inhibited cAMP-dependent apical membrane chloride conductance by 25% and Ba2+-sensitive basolateral membrane potassium conductance by 50%. These data confirm previous findings that cigarette smoke inhibits chloride secretion in a novel model of smoke exposure designed to mimic SHS exposure. They also extend previous findings to demonstrate an effect on basolateral K+ conductance. Therefore, pharmacological agents that increase either apical membrane chloride conductance or basolateral membrane potassium conductance might be of therapeutic benefit in patients with diseases related to SHS exposure.
doi:10.1186/1465-9921-10-120
PMCID: PMC2792224  PMID: 19943936
22.  Erythropoietin Signaling Promotes Invasiveness of Human Head and Neck Squamous Cell Carcinoma1 
Neoplasia (New York, N.Y.)  2005;7(5):537-543.
Abstract
Erythropoietin (Epo) is used for managing anemia in cancer patients. However, recent studies have raised concerns for this practice. We investigated the expression and function of Epo and the erythropoietin receptor (EpoR) in tumor biopsies and cell lines from human head and neck cancer. Epo responsiveness of the cell lines was assessed by Epoetin-α-induced tyrosine phosphorylation of the Janus kinase 2 (JAK2) protein kinase. Transmigration assays across Matrigel-coated filters were used to examine the effects of Epoetin-α on cell invasiveness. In 32 biopsies, we observed a significant association between disease progression and expression of Epo and its receptor, EpoR. Expression was highest in malignant cells, particularly within hypoxic and infiltrating tumor regions. Although both Epo and EpoR were expressed in human head and neck carcinoma cell lines, only EpoR was upregulated by hypoxia. Epoetin-α treatment induced prominent JAK2 phosphorylation and enhanced cell invasion. Inhibition of JAK2 phosphorylation reduced both basal and Epo-induced invasiveness. Our findings support a role for autocrine or paracrine Epo signaling in the malignant progression and local invasiveness of head and neck cancer. This mechanism may also be activated by recombinant Epo therapy and could potentially produce detrimental effects in rhEpo-treated cancer patients.
PMCID: PMC1501166  PMID: 15967106
Erythropoietin; HIF; cancer; invasion; hypoxia

Results 1-22 (22)