PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
2.  The Good and the Bad of Antibiotics 
Science translational medicine  2013;5(192):192fs25.
Bactericidal antibiotics with diverse mechanisms of action induce generation of mitochondrial reactive oxygen species in mammalian cells (Kalghatgi et al., this issue).
doi:10.1126/scitranslmed.3006567
PMCID: PMC3997060  PMID: 23825300
3.  Suppression of inflammation and acute lung injury by the transcription factor Miz1 via repression of C/EBP-δ 
Nature immunology  2013;14(5):461-469.
Inflammation is essential for host defense but can cause tissue damage and organ failure if unchecked. How the inflammation is resolved remains elusive. Here we report that the transcription factor Miz1 was required for terminating lipopolysaccharide (LPS)-induced inflammation. Genetic disruption of the Miz1 POZ domain, which is essential for its transactivation or repression activity, resulted in hyper-inflammation, lung injury and increased mortality in LPS-treated mice while reduced bacterial load and mortality in mice with Pseudomonas aeruginosa pneumonia. Loss of the Miz1 POZ domain prolonged pro-inflammatory cytokine expression. Upon stimulation, Miz1 was phosphorylated at Ser178, which is required for recruiting histone deacetylase 1 to repress transcription of C/EBP-δ, an amplifier of inflammation. Our data provide a long-sought mechanism underlying resolution of LPS-induced inflammation.
doi:10.1038/ni.2566
PMCID: PMC3631447  PMID: 23525087
4.  Proteasomal inhibition after injury prevents fibrosis by modulating TGF-β1 signalling 
Thorax  2011;67(2):139-146.
Background
The development of organ fibrosis after injury requires activation of transforming growth factor β1 which regulates the transcription of profibrotic genes. The systemic administration of a proteasomal inhibitor has been reported to prevent the development of fibrosis in the liver, kidney and bone marrow. It is hypothesised that proteasomal inhibition would prevent lung and skin fibrosis after injury by inhibiting TGF-β1-mediated transcription.
Methods
Bortezomib, a small molecule proteasome inhibitor in widespread clinical use, was administered to mice beginning 7 days after the intratracheal or intradermal administration of bleomycin and lung and skin fibrosis was measured after 21 or 40 days, respectively. To examine the mechanism of this protection, bortezomib was administered to primary normal lung fibroblasts and primary lung and skin fibroblasts obtained from patients with idiopathic pulmonary fibrosis and scleroderma, respectively.
Results
Bortezomib promoted normal repair and prevented lung and skin fibrosis when administered beginning 7 days after the initiation of bleomycin. In primary human lung fibroblasts from normal individuals and patients with idiopathic pulmonary fibrosis and in skin fibroblasts from a patient with scleroderma, bortezomib inhibited TGF-β1-mediated target gene expression by inhibiting transcription induced by activated Smads. An increase in the abundance and activity of the nuclear hormone receptor PPARγ, a repressor of Smad-mediated transcription, contributed to this response.
Conclusions
Proteasomal inhibition prevents lung and skin fibrosis after injury in part by increasing the abundance and activity of PPARγ. Proteasomal inhibition may offer a novel therapeutic alternative in patients with dysregulated tissue repair and fibrosis.
doi:10.1136/thoraxjnl-2011-200717
PMCID: PMC3595535  PMID: 21921091
5.  Nuclear β-Catenin Is Increased in Systemic Sclerosis Pulmonary Fibrosis and Promotes Lung Fibroblast Migration and Proliferation 
Pulmonary fibrosis is a disease that results in loss of normal lung architecture, but the signaling events that drive tissue destruction are incompletely understood. Wnt/β-catenin signaling is important in normal lung development, but whether abnormal signaling occurs in lung fibrosis due to systemic sclerosis and the consequences of β-catenin signaling toward the fibrogenic phenotype remain poorly defined. In this study, we show nuclear β-catenin accumulation in fibroblastic foci from lungs of patients with systemic sclerosis–associated advanced pulmonary fibrosis. Forced activation of β-catenin signaling in three independently derived sources of normal human lung fibroblasts promotes proliferation and migratory activities but is not sufficient to activate classic markers of fibroblast activation, such as TGF-β, type 1 collagen, α-smooth muscle actin, and connective tissue growth factor. These findings indicate that activation of β-catenin signaling in pulmonary fibroblasts may be a common feature of lung fibrosis, contributing to fibroproliferative and migratory activities associated with the disease.
doi:10.1165/rcmb.2010-0113OC
PMCID: PMC3262680  PMID: 21454805
Wnt/β-catenin signaling; scleroderma; fibrosis
6.  Leptin Promotes Fibroproliferative Acute Respiratory Distress Syndrome by Inhibiting Peroxisome Proliferator–activated Receptor-γ 
Rationale: Diabetic patients have a lower incidence of acute respiratory distress syndrome (ARDS), and those who develop ARDS are less likely to die. The mechanisms that underlie this protection are unknown.
Objectives: To determine whether leptin resistance, a feature of diabetes, prevents fibroproliferation after lung injury.
Methods: We examined lung injury and fibroproliferation after the intratracheal instillation of bleomycin in wild-type and leptin-resistant (db/db) diabetic mice. We examined the effect of leptin on transforming growth factor (TGF)-β1–mediated transcription in primary normal human lung fibroblasts. Bronchoalveolar lavage fluid (BAL) samples from patients with ARDS and ventilated control subjects were obtained for measurement of leptin and active TGF-β1 levels.
Measurements and Main Results: Diabetic mice (db/db) were resistant to lung fibrosis. The db/db mice had higher levels of peroxisome proliferator–activated receptor-γ (PPARγ), an inhibitor of the transcriptional response to TGF-β1, a cytokine critical in the pathogenesis of fibroproliferative ARDS. In normal human lung fibroblasts, leptin augmented the transcription of profibrotic genes in response to TGF-β1 through a mechanism that required PPARγ. In patients with ARDS, BAL leptin levels were elevated and correlated with TGF-β1 levels. Overall, there was no significant relationship between BAL leptin levels and clinical outcomes; however, in nonobese patients, higher BAL leptin levels were associated with fewer intensive care unit– and ventilator-free days and higher mortality.
Conclusions: Leptin signaling is required for bleomycin-induced lung fibrosis. Leptin augments TGF-β1 signaling in lung fibroblasts by inhibiting PPARγ. These findings provide a mechanism for the observed protection against ARDS observed in diabetic patients.
doi:10.1164/rccm.201009-1409OC
PMCID: PMC3266063  PMID: 21317313
acute lung injury; fibrosis; lung; diabetes mellitus
7.  Epithelial Cell Death Is an Important Contributor to Oxidant-mediated Acute Lung Injury 
Rationale: Acute lung injury and the acute respiratory distress syndrome are characterized by increased lung oxidant stress and apoptotic cell death. The contribution of epithelial cell apoptosis to the development of lung injury is unknown.
Objectives: To determine whether oxidant-mediated activation of the intrinsic or extrinsic apoptotic pathway contributes to the development of acute lung injury.
Methods: Exposure of tissue-specific or global knockout mice or cells lacking critical components of the apoptotic pathway to hyperoxia, a well-established mouse model of oxidant-induced lung injury, for measurement of cell death, lung injury, and survival.
Measurements and Main Results: We found that the overexpression of SOD2 prevents hyperoxia-induced BAX activation and cell death in primary alveolar epithelial cells and prolongs the survival of mice exposed to hyperoxia. The conditional loss of BAX and BAK in the lung epithelium prevented hyperoxia-induced cell death in alveolar epithelial cells, ameliorated hyperoxia-induced lung injury, and prolonged survival in mice. By contrast, Cyclophilin D–deficient mice were not protected from hyperoxia, indicating that opening of the mitochondrial permeability transition pore is dispensable for hyperoxia-induced lung injury. Mice globally deficient in the BH3-only proteins BIM, BID, PUMA, or NOXA, which are proximal upstream regulators of BAX and BAK, were not protected against hyperoxia-induced lung injury suggesting redundancy of these proteins in the activation of BAX or BAK.
Conclusions: Mitochondrial oxidant generation initiates BAX- or BAK-dependent alveolar epithelial cell death, which contributes to hyperoxia-induced lung injury.
doi:10.1164/rccm.201002-0181OC
PMCID: PMC3086743  PMID: 20959557
cell death; epithelium; Bcl-2 proteins; acute respiratory distress syndrome
8.  Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio 
Free radical biology & medicine  2009;46(10):1386-1391.
AMP-activated protein kinase (AMPK) is a sensor of cellular energy status found in metazoans that is known to be activated by stimuli that increase the cellular AMP/ATP ratio. Full activation of AMPK requires specific phosphorylation within the activation loop of the catalytic domain of the α-subunit by upstream kinases such as the serine/threonine protein kinase LKB1. Here we show that hypoxia activates AMPK through LKB1 without an increase in the AMP/ATP ratio. Hypoxia increased reactive oxygen species (ROS) levels and the antioxidant EUK-134 abolished the hypoxic activation of AMPK. Cells deficient in mitochondrial DNA (ρ0 cells) failed to activate AMPK during hypoxia but are able to in the presence of exogenous H2O2. Furthermore, we provide genetic evidence that ROS generated within the mitochondrial electron transport chain and not oxidative phosphorylation is required for hypoxic activation of AMPK. Collectively, these data indicate that oxidative stress and not an increase in the AMP/ATP ratio is required for hypoxic activation of AMPK.
doi:10.1016/j.freeradbiomed.2009.02.019
PMCID: PMC3326346  PMID: 19268526
AMP-activated kinase; Hypoxia; LKB1; Mitochondria; Reactive oxygen species; Free radicals
9.  Particulate matter Air Pollution induces hypermethylation of the p16 promoter Via a mitochondrial ROS-JNK-DNMT1 pathway 
Scientific Reports  2012;2:275.
Exposure of human populations to chronically elevated levels of ambient particulate matter air pollution < 2.5 μm in diameter (PM2.5) has been associated with an increase in lung cancer incidence. Over 70% of lung cancer cell lines exhibit promoter methylation of the tumor suppressor p16, an epigenetic modification that reduces its expression. We exposed mice to concentrated ambient PM2.5 via inhalation, 8 hours daily for 3 weeks and exposed primary murine alveolar epithelial cells to daily doses of fine urban PM (5 µg/cm2). In both mice and alveolar epithelial cells, PM exposure increased ROS production, expression of the DNA methyltransferase 1 (DNMT1), and methylation of the p16 promoter. In alveolar epithelial cells, increased transcription of DNMT1 and methylation of the p16 promoter were inhibited by a mitochondrially targeted antioxidant and a JNK inhibitor. These findings provide a potential mechanism by which PM exposure increases the risk of lung cancer.
doi:10.1038/srep00275
PMCID: PMC3281276  PMID: 22355787
10.  Alcohol Worsens Acute Lung Injury by Inhibiting Alveolar Sodium Transport through the Adenosine A1 Receptor 
PLoS ONE  2012;7(1):e30448.
Objective
Alcohol intake increases the risk of acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) and is associated with poor outcomes in patients who develop these syndromes. No specific therapies are currently available to treat or decrease the risk of ARDS in patients with alcoholism. We have recently shown increased levels of lung adenosine inhibit alveolar fluid clearance, an important predictor of outcome in patients with ARDS. We hypothesized that alcohol might worsen lung injury by increasing lung adenosine levels, resulting in impaired active Na+ transport in the lung.
Methods
We treated wild-type mice with alcohol administered i.p. to achieve blood alcohol levels associated with moderate to severe intoxication and measured the rate of alveolar fluid clearance and Na,K-ATPase expression in peripheral lung tissue and assessed the effect of alcohol on survival during exposure to hyperoxia. We used primary rat alveolar type II cells to investigate the mechanisms by which alcohol regulates alveolar Na+ transport.
Results
Exposure to alcohol reduced alveolar fluid clearance, downregulated Na,K-ATPase in the lung tissue and worsened hyperoxia-induced lung injury. Alcohol caused an increase in BAL fluid adenosine levels. A similar increase in lung adenosine levels was observed after exposure to hyperoxia. In primary rat alveolar type II cells alcohol and adenosine decreased the abundance of the Na,K-ATPase at the basolateral membrane via a mechanism that required activation of the AMPK.
Conclusions
Alcohol decreases alveolar fluid clearance and impairs survival from acute lung injury. Alcohol induced increases in lung adenosine levels may be responsible for reduction in alveolar fluid clearance and associated worsening of lung injury.
doi:10.1371/journal.pone.0030448
PMCID: PMC3260305  PMID: 22272351
12.  Biocompatible Nanoscale Dispersion of Single Walled Carbon Nanotubes Minimizes in vivo Pulmonary Toxicity 
Nano letters  2010;10(5):1664-1670.
Excitement surrounding the attractive physical and chemical characteristics of single walled carbon nanotubes (SWCNTs) has been tempered by concerns regarding their potential health risks. Here we consider the lung toxicity of nanoscale dispersed SWCNTs (mean diameter ~ 1 nm). Because dispersion of the SWCNTs increases their aspect ratio relative to as-produced aggregates, we directly test the prevailing hypothesis that lung toxicity associated with SWCNTs compared with other carbon structures is attributable to the large aspect ratio of the individual particles. Thirty days after their intratracheal administration to mice, the granuloma-like structures with mild fibrosis in the large airways observed in mice treated with aggregated SWCNTs were absent in mice treated with nanoscale dispersed SWCNTs. Examination of lung sections from mice treated with nanoscale dispersed SWCNTs revealed uptake of the SWCNTs by macrophages and gradual clearance over time. We conclude that the toxicity of SWCNTs in vivo is attributable to aggregation of the nanomaterial rather than the large aspect ratio of the individual nanotubes. Biocompatible nanoscale dispersion provides a scalable method to generate purified preparations of SWCNTs with minimal toxicity, thus allowing them to be used safely in commercial and biomedical applications.
doi:10.1021/nl9042483
PMCID: PMC2869384  PMID: 20377197
13.  Particulate Matter-Induced Lung Inflammation Increases Systemic Levels of PAI-1 and Activates Coagulation Through Distinct Mechanisms 
PLoS ONE  2011;6(4):e18525.
Background
Exposure of human populations to ambient particulate matter (PM) air pollution significantly contributes to the mortality attributable to ischemic cardiovascular events. We reported that mice treated with intratracheally instilled PM develop a prothrombotic state that requires the release of IL-6 by alveolar macrophages. We sought to determine whether exposure of mice to PM increases the levels of PAI-1, a major regulator of thrombolysis, via a similar or distinct mechanism.
Methods and Principal Findings
Adult, male C57BL/6 and IL-6 knock out (IL-6−/−) mice were exposed to either concentrated ambient PM less than 2.5 µm (CAPs) or filtered air 8 hours daily for 3 days or were exposed to either urban particulate matter or PBS via intratracheal instillation and examined 24 hours later. Exposure to CAPs or urban PM resulted in the IL-6 dependent activation of coagulation in the lung and systemically. PAI-1 mRNA and protein levels were higher in the lung and adipose tissue of mice treated with CAPs or PM compared with filtered air or PBS controls. The increase in PAI-1 was similar in wild-type and IL-6−/− mice but was absent in mice treated with etanercept, a TNF-α inhibitor. Treatment with etanercept did not prevent the PM-induced tendency toward thrombus formation.
Conclusions
Mice exposed to inhaled PM exhibited a TNF-α-dependent increase in PAI-1 and an IL-6-dependent activation of coagulation. These results suggest that multiple mechanisms link PM-induced lung inflammation with the development of a prothrombotic state.
doi:10.1371/journal.pone.0018525
PMCID: PMC3073968  PMID: 21494547
14.  Proteasomal Regulation of Pulmonary Fibrosis 
It is estimated that, combined, 400,000 people are diagnosed with idiopathic pulmonary fibrosis (IPF) or acute lung injury/acute respiratory distress syndrome annually in the United States, and both diseases are associated with an unacceptably high mortality rate. Although these disorders are distinct clinical entities, they share pathogenic mechanisms that may provide overlapping therapeutic targets. One example is fibroblast activation, which occurs concomitant with acute lung injury as well as in the progressive fibrosis of IPF. Both clinical entities are characterized by elevations of the profibrotic cytokine, transforming growth factor (TGF)-β1. Protein degradation by the ubiquitin–proteasomal system modulates TGF-β1 expression and signaling. In this review, we highlight the effects of proteasomal inhibition in various animal models of tissue fibrosis and mechanisms by which it may regulate TGF-β1 expression and signaling. At present, there are no effective therapies for fibroproliferative acute respiratory distress syndrome or IPF, and proteasomal inhibition may provide a novel, attractive target in these devastating diseases.
doi:10.1513/pats.200906-055JS
PMCID: PMC3137153  PMID: 20160152
acute respiratory distress syndrome; transforming growth factor-β1; Smad; ubiquitination
15.  Tubulin Acetylation and Histone Deacetylase 6 Activity in the Lung under Cyclic Load 
Previous studies from our lab have demonstrated that upon exposure to physiologic levels of cyclic stretch, alveolar epithelial cells demonstrate a significant decrease in the amount of polymerized tubulin (Geiger et al., Gene Therapy 2006;13:725–731). However, not all microtubules are disassembled, although the mechanisms or implications of this were unknown. Using immunofluorescence microscopy, Western blotting, and immunohistochemistry approaches, we have compared the levels of acetylated tubulin in stretched and unstretched A549 cells and in murine lungs. In cultured cells exposed to cyclic stretch (10% change in basement membrane surface area at 0.25 Hz), nearly all of the remaining microtubules were acetylated, as demonstrated using immunofluorescence microscopy. In murine lungs ventilated for 20 minutes at 12 to 20 ml/kg followed by 48 hours of spontaneous breathing or for 3 hours at 16 to 40 ml/kg, levels of acetylated tubulin were increased in the peripheral lung. In both our in vitro and in vivo studies, we have found that mild to moderate levels of cyclic stretch significantly increases tubulin acetylation in a magnitude- and duration-dependent manner. This appears to be due to a decrease in histone deacetylase 6 activity (HDAC6), the major tubulin deacetylase. Since it has been previously shown that acetylated microtubules are positively correlated to a more stable population of microtubules, this result suggests that microtubule stability may be increased by cyclic stretch, and that tubulin acetylation is one way in which cells respond to changes in exogenous mechanical forces.
doi:10.1165/rcmb.2007-0307OC
PMCID: PMC2606948  PMID: 18635817
microtubule; histone deacetylase 6; acetylation; alveolar epithelium
16.  Stretch-Induced Activation of AMP Kinase in the Lung Requires Dystroglycan 
Lung cells are exposed to cyclic stretch during normal respiration and during positive pressure mechanical ventilation administered to support gas exchange. Dystroglycan is a ubiquitously expressed matrix receptor that is required for normal basement membrane formation during embryogenesis and for maintaining the function of skeletal muscle myocytes and neurons where it links cells to matrix. We previously reported that equibiaxial stretch of primary alveolar epithelial cells activated the MAP kinase pathway ERK1/2 through a mechanism that required an interaction between dystroglycan and matrix. We determined whether this mechanism of mechanotransduction activates other signaling cascades in lung epithelium. Exposure of rat epithelial alveolar type II cells (AEC) to cyclic mechanical stretch resulted in activation of 5′ AMP-activated protein kinase (AMPK). This response was not affected by pretreatment of AEC with the ERK inhibitor PD98059 but was inhibited by knockdown in dystroglycan expression. Moreover, production of reactive oxygen species was enhanced in mechanically stimulated AEC in which dystroglycan was knocked down. This enhancement was reversed by treatment of AEC with an AMPK activator. Activation of AMPK was also observed in lung homogenates from mice after 15 minutes of noninjurious mechanical ventilation. Furthermore, knockdown of dystroglycan in the lungs of mice using an adenovirus encoding a dystroglycan shRNA prevented the stretch-induced activation of AMPK. These results suggest that exposure to cyclic stretch activates the metabolic sensing pathway AMPK in the lung epithelium and supports a novel role for dystroglycan in this mechanotransduction.
doi:10.1165/rcmb.2007-0432OC
PMCID: PMC2586043  PMID: 18556591
stretch; lung injury; mechanical ventilation; acute respiratory distress syndrome
17.  BH3 Peptides Induce Mitochondrial Fission and Cell Death Independent of BAX/BAK 
PLoS ONE  2009;4(5):e5646.
BH3 only proteins trigger cell death by interacting with pro- and anti-apoptotic members of the BCL-2 family of proteins. Here we report that BH3 peptides corresponding to the death domain of BH3-only proteins, which bind all the pro-survival BCL-2 family proteins, induce cell death in the absence of BAX and BAK. The BH3 peptides did not cause the release of cytochrome c from isolated mitochondria or from mitochondria in cells. However, the BH3 peptides did cause a decrease in mitochondrial membrane potential but did not induce the opening of the mitochondrial permeability transition pore. Interestingly, the BH3 peptides induced mitochondria to undergo fission in the absence of BAX and BAK. The binding of BCL-XL with dynamin-related protein 1 (DRP1), a GTPase known to regulate mitochondrial fission, increased in the presence of BH3 peptides. These results suggest that pro-survival BCL-2 proteins regulate mitochondrial fission and cell death in the absence of BAX and BAK.
doi:10.1371/journal.pone.0005646
PMCID: PMC2681411  PMID: 19468307
18.  The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production 
The Journal of Cell Biology  2007;177(6):1029-1036.
Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1α (HIF-1α) protein. How cells transduce hypoxic signals to stabilize the HIF-1α protein remains unresolved. We demonstrate that cells deficient in the complex III subunit cytochrome b, which are respiratory incompetent, increase ROS levels and stabilize the HIF-1α protein during hypoxia. RNA interference of the complex III subunit Rieske iron sulfur protein in the cytochrome b–null cells and treatment of wild-type cells with stigmatellin abolished reactive oxygen species (ROS) generation at the Qo site of complex III. These interventions maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Antioxidants maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Exogenous hydrogen peroxide under normoxia prevented hydroxylation of HIF-1α protein and stabilized HIF-1α protein. These results provide genetic and pharmacologic evidence that the Qo site of complex III is required for the transduction of hypoxic signal by releasing ROS to stabilize the HIF-1α protein.
doi:10.1083/jcb.200609074
PMCID: PMC2064363  PMID: 17562787
19.  Ambient particulate matter accelerates coagulation via an IL-6–dependent pathway 
The Journal of Clinical Investigation  2007;117(10):2952-2961.
The mechanisms by which exposure to particulate matter increases the risk of cardiovascular events are not known. Recent human and animal data suggest that particulate matter may induce alterations in hemostatic factors. In this study we determined the mechanisms by which particulate matter might accelerate thrombosis. We found that mice treated with a dose of well characterized particulate matter of less than 10 μM in diameter exhibited a shortened bleeding time, decreased prothrombin and partial thromboplastin times (decreased plasma clotting times), increased levels of fibrinogen, and increased activity of factor II, VIII, and X. This prothrombotic tendency was associated with increased generation of intravascular thrombin, an acceleration of arterial thrombosis, and an increase in bronchoalveolar fluid concentration of the prothrombotic cytokine IL-6. Knockout mice lacking IL-6 were protected against particulate matter–induced intravascular thrombin formation and the acceleration of arterial thrombosis. Depletion of macrophages by the intratracheal administration of liposomal clodronate attenuated particulate matter–induced IL-6 production and the resultant prothrombotic tendency. Our findings suggest that exposure to particulate matter triggers IL-6 production by alveolar macrophages, resulting in reduced clotting times, intravascular thrombin formation, and accelerated arterial thrombosis. These results provide a potential mechanism linking ambient particulate matter exposure and thrombotic events.
doi:10.1172/JCI30639
PMCID: PMC1978421  PMID: 17885684
20.  Airborne Particulate Matter Inhibits Alveolar Fluid Reabsorption in Mice via Oxidant Generation 
Ambient particulate matter is increasingly recognized as a significant contributor to human cardiopulmonary morbidity and mortality in the United States and worldwide. We sought to determine whether exposure to ambient particulate matter would alter alveolar fluid clearance in mice. Mice were exposed to a range of doses of a well-characterized particulate matter collected from the ambient air in Düsseldorf, Germany through a single intratracheal instillation, and alveolar fluid clearance and measurements of lung injury were made. Exposure to even very low doses of particulate matter (10 μg) resulted in a significant reduction in alveolar fluid clearance that was maximal 24 h after the exposure, with complete resolution after 7 d. This was paralleled by a decrease in lung Na,K-ATPase activity. To investigate the mechanism of this effect, we measured plasma membrane Na,K-ATPase abundance in A549 cells and Na,K-ATPase activity in primary rat alveolar type II cells after exposure to particulate matter in the presence or abscence of the combined superoxide dismutase and catalase mimetic EUK-134 (5 μM). Membrane but not total protein abundance of the Na,K-ATPase was decreased after exposure to particulate matter, as was Na,K-ATPase activity. This decrease was prevented by the combined superoxide dismutase/catalase mimetic EUK-134. The intratracheal instillation of particulate matter results in alveolar epithelial injury and decreased alveolar fluid clearance, conceivably due to downregulation of the Na,K-ATPase.
doi:10.1165/rcmb.2005-0329OC
PMCID: PMC2644228  PMID: 16439801
antioxidant; lung injury; Na,K-ATPase; pollution; ROS
21.  To live or die: a critical decision for the lung 
Journal of Clinical Investigation  2005;115(4):828-830.
Every cell in the body expresses a set of proteins designed to trigger permeabilization of the mitochondria and cell death. Inactivation or inappropriate triggering of these pathways is increasingly recognized as a contributor to human disease. A study in this issue of the JCI demonstrates that IL-6 exerts its protective effect against the development of lung injury following exposure of mice to 95% O2 by increasing the expression of a Bcl-2–related protein, A1. This protein acts to prevent mitochondrial membrane permeabilization and cell death following exposure to hyperoxia. The data in this study lend support to the hypothesis that inappropriate triggering of cell-death pathways may contribute to the development of hyperoxic pulmonary edema, lung injury, and respiratory failure.
doi:10.1172/JCI200524681
PMCID: PMC1070430  PMID: 15841170
22.  Bcl-2 Family Members and Functional Electron Transport Chain Regulate Oxygen Deprivation-Induced Cell Death 
Molecular and Cellular Biology  2002;22(1):94-104.
The mechanisms underlying cell death during oxygen deprivation are unknown. We report here a model for oxygen deprivation-induced apoptosis. The death observed during oxygen deprivation involves a decrease in the mitochondrial membrane potential, followed by the release of cytochrome c and the activation of caspase-9. Bcl-XL prevented oxygen deprivation-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. The ability of Bcl-XL to prevent cell death was dependent on allowing the import of glycolytic ATP into the mitochondria to generate an inner mitochondrial membrane potential through the F1F0-ATP synthase. In contrast, although activated Akt has been shown to inhibit apoptosis induced by a variety of apoptotic stimuli, it did not prevent cell death during oxygen deprivation. In addition to Bcl-XL, cells devoid of mitochondrial DNA (ρ° cells) that lack a functional electron transport chain were resistant to oxygen deprivation. Further, murine embryonic fibroblasts from bax−/− bak−/− mice did not die in response to oxygen deprivation. These data suggest that when subjected to oxygen deprivation, cells die as a result of an inability to maintain a mitochondrial membrane potential through the import of glycolytic ATP. Proapoptotic Bcl-2 family members and a functional electron transport chain are required to initiate cell death in response to oxygen deprivation.
doi:10.1128/MCB.22.1.94-104.2002
PMCID: PMC134234  PMID: 11739725
23.  β2-Adrenergic agonists augment air pollution–induced IL-6 release and thrombosis 
The Journal of Clinical Investigation  2014;124(7):2935-2946.
Acute exposure to particulate matter (PM) air pollution causes thrombotic cardiovascular events, leading to increased mortality rates; however, the link between PM and cardiovascular dysfunction is not completely understood. We have previously shown that the release of IL-6 from alveolar macrophages is required for a prothrombotic state and acceleration of thrombosis following exposure to PM. Here, we determined that PM exposure results in the systemic release of catecholamines, which engage the β2-adrenergic receptor (β2AR) on murine alveolar macrophages and augment the release of IL-6. In mice, β2AR signaling promoted the development of a prothrombotic state that was sufficient to accelerate arterial thrombosis. In primary human alveolar macrophages, administration of a β2AR agonist augmented IL-6 release, while the addition of a beta blocker inhibited PM-induced IL-6 release. Genetic loss or pharmacologic inhibition of the β2AR on murine alveolar macrophages attenuated PM-induced IL-6 release and prothrombotic state. Furthermore, exogenous β2AR agonist therapy further augmented these responses in alveolar macrophages through generation of mitochondrial ROS and subsequent increase of adenylyl cyclase activity. Together, these results link the activation of the sympathetic nervous system by β2AR signaling with metabolism, lung inflammation, and an enhanced susceptibility to thrombotic cardiovascular events.
doi:10.1172/JCI75157
PMCID: PMC4071386  PMID: 24865431
24.  Evolutionary Conserved Role of c-Jun-N-Terminal Kinase in CO2-Induced Epithelial Dysfunction 
PLoS ONE  2012;7(10):e46696.
Elevated CO2 levels (hypercapnia) occur in patients with respiratory diseases and impair alveolar epithelial integrity, in part, by inhibiting Na,K-ATPase function. Here, we examined the role of c-Jun N-terminal kinase (JNK) in CO2 signaling in mammalian alveolar epithelial cells as well as in diptera, nematodes and rodent lungs. In alveolar epithelial cells, elevated CO2 levels rapidly induced activation of JNK leading to downregulation of Na,K-ATPase and alveolar epithelial dysfunction. Hypercapnia-induced activation of JNK required AMP-activated protein kinase (AMPK) and protein kinase C-ζ leading to subsequent phosphorylation of JNK at Ser-129. Importantly, elevated CO2 levels also caused a rapid and prominent activation of JNK in Drosophila S2 cells and in C. elegans. Paralleling the results with mammalian epithelial cells, RNAi against Drosophila JNK fully prevented CO2-induced downregulation of Na,K-ATPase in Drosophila S2 cells. The importance and specificity of JNK CO2 signaling was additionally demonstrated by the ability of mutations in the C. elegans JNK homologs, jnk-1 and kgb-2 to partially rescue the hypercapnia-induced fertility defects but not the pharyngeal pumping defects. Together, these data provide evidence that deleterious effects of hypercapnia are mediated by JNK which plays an evolutionary conserved, specific role in CO2 signaling in mammals, diptera and nematodes.
doi:10.1371/journal.pone.0046696
PMCID: PMC3466313  PMID: 23056407
25.  The Effect of Rosuvastatin in a Murine Model of Influenza A Infection 
PLoS ONE  2012;7(4):e35788.
Rationale
HMG-CoA reductase inhibitors such as rosuvastatin may have immunomodulatory and anti-inflammatory effects that may reduce the severity of influenza A infection. We hypothesized that rosuvastatin would decrease viral replication, attenuate lung injury, and improve mortality following influenza A infection in mice.
Methods
C57Bl/6 mice were treated daily with rosuvastatin (10 mg/kg/day) supplemented in chow (or control chow) beginning three days prior to infection with either A//Udorn/72 [H3N2] or A/WSN/33 [H1N1] influenza A virus (1×105 pfu/mouse). Plaque assays were used to examine the effect of rosuvastatin on viral replication in vitro and in the lungs of infected mice. We measured cell count with differential, protein and cytokines in the bronchoalveolar lavage (BAL) fluid, histologic evidence of lung injury, and wet-to-dry ratio on Day 1, 2, 4, and 6. We also recorded daily weights and mortality.
Results
The administration of rosuvastatin had no effect on viral clearance of influenza A after infection. Weight loss, lung inflammation and lung injury severity were similar in the rosuvastatin and control treated mice. In the mice infected with influenza A (A/WSN/33), mortality was unaffected by treatment with rosuvastatin.
Conclusions
Statins did not alter the replication of influenza A in vitro or enhance its clearance from the lung in vivo. Statins neither attenuated the severity of influenza A-induced lung injury nor had an effect on influenza A-related mortality. Our data suggest that the association between HMG CoA reductase inhibitors and improved outcomes in patients with sepsis and pneumonia are not attributable to their effects on influenza A infection.
doi:10.1371/journal.pone.0035788
PMCID: PMC3335012  PMID: 22536437

Results 1-25 (26)