PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  p38 MAPK inhibitors, IKK2 inhibitors, and TNFα inhibitors in COPD 
Current opinion in pharmacology  2012;12(3):287-292.
COPD represents a major respiratory disorder, causing significant morbidity and mortality throughout the world. While therapies exist for COPD, they are not always effective, and many patients experience exacerbations and morbidity despite current therapies. Study of the molecular mechanisms involved in the underlying physiological manifestations of COPD has yielded multiple new targets for therapeutic intervention. In this review, we discuss signaling pathways involved in COPD pathogenesis and review clinical studies of p38 MAPK inhibitors, TNFα inhibitors, and IKK2 inhibitors as potential COPD therapies.
doi:10.1016/j.coph.2012.01.016
PMCID: PMC4030417  PMID: 22365729
airways disease; inflammation; irreversible airway obstruction; airway remodeling
2.  Airway Smooth Muscle in Asthma: Just a Target for Bronchodilation? 
Clinics in chest medicine  2012;33(3):543-558.
Synopsis
Airway smooth muscle (ASM) has long been recognized as the main cell type responsible for bronchial hyperresponsiveness. It has thus been considered as a target for bronchodilation. In asthma however, there is a complex relationship between ASM and inflammatory cells such as mast cells and T lymphocytes. Moreover, the increased ASM mass in the asthmatic airways is one of the key features of airway remodeling. This article aims to review the main concepts about the three possible roles of ASM in asthma including (i) contractile tone, (ii) inflammatory response and (iii) remodeling.
doi:10.1016/j.ccm.2012.05.002
PMCID: PMC3431506  PMID: 22929101
Bronchodilators; Hyperresponsiveness; Inflammation; Remodeling; Smooth muscle
3.  Trichostatin A Abrogates Airway Constriction, but Not Inflammation, in Murine and Human Asthma Models 
Histone deacetylase (HDAC) inhibitors may offer novel approaches in the treatment of asthma. We postulate that trichostatin A (TSA), a Class 1 and 2 inhibitor of HDAC, inhibits airway hyperresponsiveness in antigen-challenged mice. Mice were sensitized and challenged with Aspergillus fumigatus antigen (AF) and treated with TSA, dexamethasone, or vehicle. Lung resistance (RL) and dynamic compliance were measured, and bronchial alveolar lavage fluid (BALF) was analyzed for numbers of leukocytes and concentrations of cytokines. Human precision-cut lung slices (PCLS) were treated with TSA and their agonist-induced bronchoconstriction was measured, and TSA-treated human airway smooth muscle (ASM) cells were evaluated for the agonist-induced activation of Rho and intracellular release of Ca2+. The activity of HDAC in murine lungs was enhanced by antigen and abrogated by TSA. TSA also inhibited methacholine (Mch)-induced increases in RL and decreases in dynamic compliance in naive control mice and in AF-sensitized and -challenged mice. Total cell counts, concentrations of IL-4, and numbers of eosinophils in BALF were unchanged in mice treated with TSA or vehicle, whereas dexamethasone inhibited the numbers of eosinophils in BALF and concentrations of IL-4. TSA inhibited the carbachol-induced contraction of PCLS. Treatment with TSA inhibited the intracellular release of Ca2+ in ASM cells in response to histamine, without affecting the activation of Rho. The inhibition of HDAC abrogates airway hyperresponsiveness to Mch in both naive and antigen-challenged mice. TSA inhibits the agonist-induced contraction of PCLS and mobilization of Ca2+ in ASM cells. Thus, HDAC inhibitors demonstrate a mechanism of action distinct from that of anti-inflammatory agents such as steroids, and represent a promising therapeutic agent for airway disease.
doi:10.1165/rcmb.2010-0276OC
PMCID: PMC3297166  PMID: 22298527
HDAC; asthma; allergen; mice; trichostatin A
4.  Anti-inflammatory Effects of Thiazolidinediones in Human Airway Smooth Muscle Cells 
Airway smooth muscle (ASM) cells have been reported to contribute to the inflammation of asthma. Because the thiazolidinediones (TZDs) exert anti-inflammatory effects, we examined the effects of troglitazone and rosiglitazone on the release of inflammatory moieties from cultured human ASM cells. Troglitazone dose-dependently reduced the IL-1β–induced release of IL-6 and vascular endothelial growth factor, the TNF-α–induced release of eotaxin and regulated on activation, normal T expressed and secreted (RANTES), and the IL-4–induced release of eotaxin. Rosiglitazone also inhibited the TNF-α–stimulated release of RANTES. Although TZDs are known to activate peroxisome proliferator–activated receptor-γ (PPARγ), these anti-inflammatory effects were not affected by a specific PPARγ inhibitor (GW 9662) or by the knockdown of PPARγ using short hairpin RNA. Troglitazone and rosiglitazone each caused the activation of adenosine monophosphate-activated protein kinase (AMPK), as detected by Western blotting using a phospho-AMPK antibody. The anti-inflammatory effects of TZDs were largely mimicked by the AMPK activators, 5-amino-4-imidazolecarboxamide ribose (AICAR) and metformin. However, the AMPK inhibitors, Ara A and Compound C, were not effective in preventing the anti-inflammatory effects of troglitazone or rosiglitzone, suggesting that the effects of these TZDs are likely not mediated through the activation of AMPK. These data indicate that TZDs inhibit the release of a variety of inflammatory mediators from human ASM cells, suggesting that they may be useful in the treatment of asthma, and the data also indicate that the effects of TZDs are not mediated by PPARγ or AMPK.
doi:10.1165/rcmb.2009-0445OC
PMCID: PMC3145064  PMID: 20870897
shRNA; anti-inflammatory; PPARγ; IL-1β; TNF-α
5.  Glucocorticoid Receptor Interacting Protein-1 Restores Glucocorticoid Responsiveness in Steroid-Resistant Airway Structural Cells 
Glucocorticoid (GC) insensitivity represents a profound challenge in managing patients with asthma. The mutual inhibition of transcriptional activity between GC receptor (GR) and other regulators is one of the mechanisms contributing to GC resistance in asthma. We recently reported that interferon regulatory factor (IRF)-1 is a novel transcription factor that promotes GC insensitivity in human airway smooth muscle (ASM) cells by interfering with GR signaling (Tliba et al., Am J Respir Cell Mol Biol 2008;38:463–472). Here, we sought to determine whether the inhibition of GR function by IRF-1 involves its interaction with the transcriptional co-regulator GR-interacting protein 1 (GRIP-1), a known GR transcriptional co-activator. We here found that siRNA-mediated GRIP-1 depletion attenuated IRF-1–dependent transcription of the luciferase reporter construct and the mRNA expression of an IRF-1–dependent gene, CD38. In parallel experiments, GRIP-1 silencing significantly reduced GR-mediated transactivation activities. Co-immunoprecipitation and GST pull-down assays showed that GRIP-1, through its repression domain, physically interacts with IRF-1 identifying GRIP-1 as a bona fide transcriptional co-activator for IRF-1. Interestingly, the previously reported inhibition of GR-mediated transactivation activities by either TNF-α and IFN-γ treatment or IRF-1 overexpression was fully reversed by increasing cellular levels of GRIP-1. Together, these data suggest that the cellular accumulation of IRF-1 may represent a potential molecular mechanism mediating altered cellular response to GC through the depletion of GRIP-1 from the GR transcriptional regulatory complexes.
doi:10.1165/rcmb.2009-0239RC
PMCID: PMC2809222  PMID: 19805480
glucocorticoid; cytokine; airway smooth muscle; IRF-1; GRIP-1
6.  Cytokines Induce an Early Steroid Resistance in Airway Smooth Muscle Cells 
We have previously shown that long-term treatment of airway smooth muscle (ASM) cells with a combination of TNF-α and IFN-γ impaired steroid anti-inflammatory action through the up-regulation of glucocorticoid receptor beta isoform (GRβ) (Mol Pharmacol 2006;69:588–596). We here found that steroid actions could also be suppressed by short-term exposure of ASM cells to TNF-α and IFN-γ (6 h) as shown by the abrogated glucocorticoid responsive element (GRE)-dependent gene transcription; surprisingly, neither GRα nuclear translocation nor GRβ expression was affected by cytokine mixture. The earlier induction of CD38, a molecule recently involved in asthma, seen with TNF-α and IFN-γ combination but not with cytokine alone, was also completely insensitive to steroid pretreatment. Chromatin-immunoprecipitation (IP) and siRNA strategies revealed not only increased binding of interferon regulatory factor 1 (IRF-1) transcription factor to CD38 promoter, but also its implication in regulating CD38 gene transcription. Interestingly, the capacity of fluticasone to completely inhibit TNF-α–induced IRF-1 expression, IRF-1 DNA binding, and transactivation activities was completely lost in cells exposed to TNF-α and IFN-γ in combination. This early steroid dysfunction seen with cytokine combination could be reproduced by enhancing IRF-1 cellular levels using constitutively active IRF-1, which dose-dependently inhibited GRE-dependent gene transcription. Consistently, reducing IRF-1 cellular levels using siRNA approach significantly restored steroid transactivation activities. Collectively, our findings demonstrate for the first time that IRF-1 is a novel alternative GRβ-independent mechanism mediating steroid dysfunction induced by pro-asthmatic cytokines, in part via the suppression of GRα activities.
doi:10.1165/rcmb.2007-0226OC
PMCID: PMC2274949  PMID: 17947510
transcription factor; glucocorticoid; inflammation; asthma; mesenchymal cells

Results 1-6 (6)