PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
author:("Ray, pitha")
1.  Monitoring Caspase-3 Activation with a Multimodality Imaging Sensor in Living Subjects 
Purpose
Capsase-3 plays an important role in chemotherapy-induced apoptosis in many cancers. Herein, we applied a multimodality reporter vector to monitor caspase-3 activation indirectly in live cells and tumors of living animals undergoing apoptosis.
Experimental Design
A fusion protein (MTF) was constructed by combining three different reporter proteins, red fluorescent protein (mRFP1), firefly luciferase (FL), and HSV1-sr39 truncated thymidine kinase (TK), linked through a caspase-3 recognizable polypeptide linker. After cleavage by caspase-3, a significant gain in mRFP1, FL, and TK activity are observed by fluorescence-activated cell sorting and enzyme-based assays. A melanoma cell line (B16F10-mtf-hrl) stably expressing mtf (to measure caspase-3 activation) and hrl-IRES-gfp (to determine the decrease in a number of viable cells) vectors was generated to measure two independent molecular events upon treatment.
Results
Upon induction with 8 μmol/L staurosporine, the fusion protein showed a 2.8-fold increase in FL (P = 0.03), a 1.5-fold increase in TK (P = not significant), and a 2-fold increase in mRFP1 (P = 0.05) activity in 293T cells. Bioluminescence and micropositron emission tomography imaging of the apoptotic B16F10-mtf-hrl tumors showed a 2-fold higher FL activity (897 versus 416) and a 2-fold higher TK activity (10.3 versus 3.87) than control tumors when normalized with RL activity. Using a similar normalization approach, the time kinetics of caspase-3 activation by two protein kinase-C inhibitors was noninvasively monitored in living mice.
Conclusion
This multimodality caspase sensor vector could effectively and noninvasively monitor caspase-3 activation from single live cells to a multicellular tumor environment and, thus, would be a valuable tool for drug screening in preclinical models and future patient cell based therapy.
doi:10.1158/1078-0432.CCR-07-5244
PMCID: PMC4155946  PMID: 18794090
2.  Stem Cell-Mediated Accelerated Bone Healing Observed with In Vivo Molecular and Small Animal Imaging Technologies in a Model of Skeletal Injury 
Adult stem cells are promising therapeutic reagents for skeletal regeneration. We hope to validate by molecular imaging technologies the in vivo life cycle of adipose-derived multipotent cells (ADMCs) in an animal model of skeletal injury. Primary ADMCs were lentivirally transfected with a fusion reporter gene and injected intravenously into mice with bone injury or sham operation. Bioluminescence imaging (BLI), [18F]FHBG (9-(fluoro-hydroxy-methyl-butyl-guanine)-micro-PET, [18F]Fluoride ion micro-PET and micro-CT were performed to monitor stem cells and their effect. Bioluminescence microscopy and immunohistochemistry were done for histological confirmation. BLI showed ADMC’s traffic from the lungs then to the injury site. BLI microscopy and immunohistochemistry confirmed the ADMCs in the bone defect. Micro-CT measurements showed increased bone healing in the cell-injected group compared to the noninjected group at postoperative day 7 (p <0.05). Systemically administered ADMC’s traffic to the site of skeletal injury and facilitate bone healing, as demonstrated by molecular and small animal imaging. Molecular imaging technologies can validate the usage of adult adipose tissue-derived multipotent cells to promote fracture healing. Imaging can in the future help establish therapeutic strategies including dosage and administration route.
doi:10.1002/jor.20736
PMCID: PMC4154812  PMID: 18752273
stem cell; imaging; cell tracking
3.  Imaging Tri-Fusion Multimodality Reporter Gene Expression in Living Subjects 
Cancer research  2004;64(4):1323-1330.
Imaging reporter gene expression in living subjects with various imaging modalities is a rapidly accelerating area of research. Applications of these technologies to cancer research, gene therapy, and transgenic models are rapidly expanding. We report construction and testing of several triple fusion reporter genes compatible with bioluminescence, fluorescence and positron emission tomography (PET) imaging. A triple fusion reporter vector harboring a bioluminescence synthetic Renilla luciferase (hrl) reporter gene, a reporter gene encoding the monomeric red fluorescence protein (mrfp1), and a mutant herpes simplex virus type 1 sr39 thymidine kinase [HSV1-truncated sr39tk (ttk); a PET reporter gene] was found to preserve the most activity for each protein component and was therefore investigated in detail. After validating the activities of all three proteins encoded by the fusion gene in cell culture, we imaged living mice bearing 293T cells transiently expressing the hrl-mrfp-ttk vector by microPET and using a highly sensitive cooled charge-coupled device camera compatible with both bioluminescence and fluorescence imaging. A lenti-viral vector carrying the triple fusion reporter gene was constructed and used to isolate stable expressers by fluorescence-activated cell sorting. These stable 293T cells were further used to show good correlation (R2 ~0.74–0.85) of signal from each component by imaging tumor xenografts in living mice with all three modalities. Furthermore, metastases of a human melanoma cell line (A375M) stably expressing the triple fusion were imaged by microPET and optical technologies over a 40–50-day time period in living mice. Imaging of reporter gene expression from single cells to living animals with the help of a single tri-fusion reporter gene will have the potential to accelerate translational cancer research.
PMCID: PMC4154814  PMID: 14973078
4.  Visualization of Telomerase Reverse Transcriptase (hTERT) Promoter Activity Using a Trimodality Fusion Reporter Construct 
Our goal was to noninvasively measure chemotherapy-induced changes in the expression of critical tumor growth genes. To achieve this goal, we used radionuclide and optical methods to measure changes in human telomerase reverse transcriptase (hTERT) gene expression in tumor cells before and after 5-fluorouracil treatment.
Methods
A fusion reporter construct, containing humanized Renilla luciferase (hrl, for bioluminescent imaging), monomeric red fluorescence protein 1 (mrfp1, for fluorescent imaging), and a truncated thymidine kinase (ttk, for imaging of radiolabeled acycloguanosines), was placed under the control of hTERT promoter fragments. These constructs were introduced into tumor cell lines with and without hTERT expression. Transfected cells were treated with 5-fluorouracil, a chemotherapeutic that decreases hTERT gene expression, and treatment-induced changes in hTERT promoter activity were imaged.
Results
When the fusion construct is introduced into cell lines that express hTERT, all 3 reporter systems are highly expressed and hTERT promoter activity can be visualized. Cell lines lacking hTERT transcription show no significant reporter expression. Decreases in hTERT gene expression caused by 5-fluorouracil treatment could be visualized in living 293T cells by both fluorescent microscopy and bioluminescent imaging.
Conclusion
hTERT promoter activity can be monitored by 1 radionuclide and 2 optical reporter systems using a single reporter construct. This in vitro study provides evidence that our multimodality reporter construct can be used to study the expression of a critical tumor growth gene in living subjects.
PMCID: PMC4141555  PMID: 16455633
molecular imaging; reporter genes; telomerase; telomerase reverse transcriptase
5.  Semiautomated Radiosynthesis and Biological Evaluation of [18F]FEAU: A Novel PET Imaging Agent for HSV1-tk/sr39tk Reporter Gene Expression 
2′-Deoxy-2′-[18F]fluoro-5-ethyl-1-β-d-arabinofuranosyluracil ([18F]FEAU) is a promising radiolabeled nucleoside designed to monitor Herpes Simplex Virus Type 1 thymidine kinase (HSV1-tk) reporter gene expression with positron emission tomography (PET). However, the challenging radiosynthesis creates problems for being able to provide [18F]FEAU routinely. We have developed a routine method using a commercial GE TRACERlab FX-FN radiosynthesis module with customized equipment to provide [18F]FEAU. All radiochemical yields are decay corrected to end-of-bombardment and reported as means±SD. Radiofluorination (33±8%; n=4), bromination (85±8%; n=4), coupling reaction (83±6%; n=4), base hydrolysis steps, and subsequent high-performance liquid chromatography purification afforded purified [18F]FEAU β-anomer in 5±1% overall yield (n=3 runs) after ∼5.5 h and a β/α-anomer ratio of 7.4. Radiochemical/chemical purities and specific activity exceeded 99% and 1.3 Ci/μmol (48 GBq/μmol), respectively. In cell culture, [18F]FEAU showed significantly (P<0.05) higher accumulation in C6 cells expressing HSV1-tk/sr39tk as compared to wild-type C6 cells. Furthermore, [18F] FEAU showed slightly higher accumulation than 9-[4-[18F]fluoro-3-(hydroxymethyl)butylguanine ([18F]FHBG) in cells expressing HSV1-tk (P<0.05), whereas [18F]FHBG showed significantly higher (P<0.05) accumulation than [18F]FEAU in HSV1-sr39tk-expressing cells. micro-PET imaging of mice carrying tumor xenografts of C6 cells stably expressing HSV1-tkor HSV1-sr39tk are consistent with the cell uptake results. The [18F]FEAU mouse images also showed very low gastrointestinal signal with predominant renal clearance as compared to [18F]FHBG. The routine radiosynthesis of [18F]FEAU was successfully semiautomated using a commercial module along with customized equipment to provide the β-anomer in modest yields. Although further studies are needed, early results also suggest [18F]FEAU is a promising PET radiotracer for monitoring HSV1-tk reporter gene expression.
doi:10.1007/s11307-007-0122-3
PMCID: PMC4141558  PMID: 18157580
[18F]FEAU; Semiautomated; Gene therapy; Reporter genes; Thymidine kinase; Molecular imaging
6.  Reporter gene imaging of protein–protein interactions in living subjects 
In the past few years there has been a veritable explosion in the field of reporter gene imaging, with the aim of determining the location, duration and extent of gene expression within living subjects. An important application of this approach is the molecular imaging of interacting protein partners, which could pave the way to functional proteomics in living animals and might provide a tool for the whole-body evaluation of new pharmaceuticals targeted to modulate protein–protein interactions. Three general methods are currently available for imaging protein–protein interactions in living subjects using reporter genes: a modified mammalian two-hybrid system, a bioluminescence resonance energy transfer (BRET) system, and split reporter protein complementation and reconstitution strategies. In the future, these innovative approaches are likely to enhance our appreciation of entire biological pathway systems and their pharmacological regulation.
doi:10.1016/j.copbio.2007.01.007
PMCID: PMC4141564  PMID: 17254764
7.  A Transgenic Tri-Modality Reporter Mouse 
PLoS ONE  2013;8(8):e73580.
Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This “Tri-Modality Reporter Mouse” system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent (tdTomato), and positron emission tomography (PET) (ttk) modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R2=0.89 for TdTomato vs Fluc, R2=0.94 for Fluc vs TTK, R2=0.89 for TdTomato vs TTK) in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs) isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R2=0.99 for bioluminescence imaging (BLI)). Both BLI (R2=0.93) and micro-PET (R2=0.94) imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R2=0.97). Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI) by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01). MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4th week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell research, tissue engineering research, and organ transplantation.
doi:10.1371/journal.pone.0073580
PMCID: PMC3739740  PMID: 23951359
8.  Non-Invasive Imaging of Phosphoinositide-3-Kinase-Catalytic-Subunit-Alpha (PIK3CA) Promoter Modulation in Small Animal Models 
PLoS ONE  2013;8(2):e55971.
Activation of the PI3K/Akt pathway, a critical step for survival in cancer cells is often associated with decreased sensitivity to several chemotherapeutic drugs. PIK3CA gene amplification is observed in 16–24% of epithelial ovarian cancer (EOC) patients in conjunction with p53 mutations. A 900 bp long PIK3CA promoter is shown to be negatively regulated by p53 in ovarian surface epithelial cells but the consequence of chemotherapeutic drug treatments on this promoter in ovarian cancer cells is largely unknown. We aim to study the modulation of this promoter by cisplatin using an improved fusion reporter in ovarian cancer cells and tumor xenografts by non-invasive imaging approach. A PIK3CA sensor was developed using a bi-fusion reporter from a newly constructed library of bi- and tri-fusion vectors comprising of two mutant far red fluorescent proteins (mcherry/mch and tdTomato/tdt), a mutant firefly luciferase (fluc2), and a PET reporter protein (ttk). In vivo imaging of mice implanted with 293T cells transiently expressing these bi- and tri-fusion reporters along with respective controls revealed comparable activity of each reporter in the fusion background and fluc2-tdt as the most sensitive one. Repression of the PIK3CA sensor by drugs was inversely proportional to cellular p53 level in a germline (PA1) and in an EOC (A2780) cell line but not in a p53 deficient EOC (SKOV3) cell line. Bioluminescence imaging of tumor xenografts stably expressing the PIK3CA sensor in PA1 and A2780 cells exhibited attenuating activity without any change in SKOV3 tumors expressing the PIK3CA sensor after cisplatin treatment. Sequential mutation at p53 binding sites showed gradual increase in promoter activity and decreased effects of the drugs. These newly developed PIK3CA-fluc2-tdt and the mutant reporter sensors thus would be extremely useful for screening new drugs and for functional assessment of PIK3CA expression from intact cells to living subjects.
doi:10.1371/journal.pone.0055971
PMCID: PMC3564913  PMID: 23393606
9.  Non-invasive imaging of PI3K/Akt/mTOR signalling in cancer 
Platinum based drugs are widely used to treat various types of cancers by inducing DNA damage mediated cytotoxicity. However, acquirement of chemoresistance towards platinum based drugs is a common phenomenon and a major hurdle in combating the relapse of the disease. Oncogenesis and chemoresistance are multifactorial maladies which often involve deregulation of one of the prime cell survival pathways, the PI3K/Akt/mTOR signalling cascade. The genetic alterations related to this pathway are often responsible for initiation and/or maintenance of carcinogenesis. Molecular components of this pathway are long being recognized as major targets for therapeutic intervention and are now also have emerged as potential tools for diagnosis of cancer. To develop novel therapeutics against the key molecules of PI3K pathway, stringent validation is required using both in-vitro and in-vivo models. Repetitive and non-invasive molecular imaging techniques, a relatively recent field in biomedical imaging hold great promises for monitoring such diagnosis and therapy. In this review, we first introduced the PI3K/Akt/mTOR pathway and its role in acquirement of chemoresistance in various cancers. Further we described how non-invasive molecular imaging approaches are sought to use this PI3K signalling axis for the therapeutics and diagnosis. A theranostic approach using various imaging modalities should be the future of PI3K signalling based drug development venture.
PMCID: PMC3484421  PMID: 23145359
PI3K signalling; platinum based chemoresistance; repetitive and non-invasive molecular imaging techniques; PET imaging; bioluminescence imaging; Akt sensor; fluorescence imaging
10.  Multimodality Imaging of Tumor Xenografts and Metastases in Mice with Combined Small-Animal PET, Small-Animal CT, and Bioluminescence Imaging 
Journal of Nuclear Medicine  2007;48(2):295-303.
Recent developments have established molecular imaging of mouse models with small-animal PET and bioluminescence imaging (BLI) as an important tool in cancer research. One of the disadvantages of these imaging modalities is the lack of anatomic information. We combined small-animal PET and BLI technology with small-animal CT to obtain fusion images with both molecular and anatomic information.
Methods
We used small-animal PET/CT and BLI to detect xenografts of different cell lines and metastases of a melanoma cell line (A375M-3F) that had been transduced with a lentiviral vector containing a trimodality imaging reporter gene encoding a fusion protein with Renilla luciferase, monomeric red fluorescent protein, and a mutant herpes simplex virus type 1 thymidine kinase.
Results
Validation studies in mouse xenograft models showed a good coregistration of images from both PET and CT. Melanoma metastases were detected by 18F-FDG PET, 9-[4-18F-fluoro-3-(hydroxymethyl) butyl]guanine (18F-FHBG) PET, CT, and BLI and confirmed by ex vivo assays of Renilla luciferase and mutant thymidine kinase expression. 18F-FHBG PET/CT allowed detection and localization of lesions that were not seen on CT because of poor contrast resolution and were not seen on 18F-FDG PET because of higher background uptake relative to 18F-FHBG.
Conclusion
The combination of 18F-FHBG PET, small-animal CT, and BLI allows a sensitive and improved quantification of tumor burden in mice. This technique is potentially useful for the study of the biologic determinants of metastasis and for the evaluation of novel cancer treatments.
PMCID: PMC3263830  PMID: 17268028
microPET; small-animal CT; bioluminescence imaging; metastasis; mouse; melanoma
11.  Reporter Gene Imaging in Therapy and Diagnosis 
Theranostics  2012;2(4):333-334.
Noninvasive molecular imaging using reporter genes is a relatively recent field in biomedical imaging that holds great promises for disease diagnosis and therapy. As modern medicine is moving towards personalized medicine, targeted biomolecule based therapies is gaining popularity that requires careful and systematic validation. Reporter genes have emerged as important generalizable tools to overcome the shortcomings of direct evaluation of individual biomolecules and are being applied in various fields such as cell therapy, stem cell therapy, immune therapy, viral gene delivery through optical, radionuclide, magnetic resonance imaging techniques. New approaches to image protein-protein interaction, protein phosphorylation, protein folding that are crucial parameters for theranostic study using reporter genes are being developed. All these new technologies and relevant preclinical and clinical researches will determine the success of early detection and personalized therapy in the future.
doi:10.7150/thno.4376
PMCID: PMC3354328  PMID: 22606212
reporter genes; molecular imaging
12.  Cancer Screening: A Mathematical Model Relating Secreted Blood Biomarker Levels to Tumor Sizes  
PLoS Medicine  2008;5(8):e170.
Background
Increasing efforts and financial resources are being invested in early cancer detection research. Blood assays detecting tumor biomarkers promise noninvasive and financially reasonable screening for early cancer with high potential of positive impact on patients' survival and quality of life. For novel tumor biomarkers, the actual tumor detection limits are usually unknown and there have been no studies exploring the tumor burden detection limits of blood tumor biomarkers using mathematical models. Therefore, the purpose of this study was to develop a mathematical model relating blood biomarker levels to tumor burden.
Methods and Findings
Using a linear one-compartment model, the steady state between tumor biomarker secretion into and removal out of the intravascular space was calculated. Two conditions were assumed: (1) the compartment (plasma) is well-mixed and kinetically homogenous; (2) the tumor biomarker consists of a protein that is secreted by tumor cells into the extracellular fluid compartment, and a certain percentage of the secreted protein enters the intravascular space at a continuous rate. The model was applied to two pathophysiologic conditions: tumor biomarker is secreted (1) exclusively by the tumor cells or (2) by both tumor cells and healthy normal cells. To test the model, a sensitivity analysis was performed assuming variable conditions of the model parameters. The model parameters were primed on the basis of literature data for two established and well-studied tumor biomarkers (CA125 and prostate-specific antigen [PSA]). Assuming biomarker secretion by tumor cells only and 10% of the secreted tumor biomarker reaching the plasma, the calculated minimally detectable tumor sizes ranged between 0.11 mm3 and 3,610.14 mm3 for CA125 and between 0.21 mm3 and 131.51 mm3 for PSA. When biomarker secretion by healthy cells and tumor cells was assumed, the calculated tumor sizes leading to positive test results ranged between 116.7 mm3 and 1.52 × 106 mm3 for CA125 and between 27 mm3 and 3.45 × 105 mm3 for PSA. One of the limitations of the study is the absence of quantitative data available in the literature on the secreted tumor biomarker amount per cancer cell in intact whole body animal tumor models or in cancer patients. Additionally, the fraction of secreted tumor biomarkers actually reaching the plasma is unknown. Therefore, we used data from published cell culture experiments to estimate tumor cell biomarker secretion rates and assumed a wide range of secretion rates to account for their potential changes due to field effects of the tumor environment.
Conclusions
This study introduced a linear one-compartment mathematical model that allows estimation of minimal detectable tumor sizes based on blood tumor biomarker assays. Assuming physiological data on CA125 and PSA from the literature, the model predicted detection limits of tumors that were in qualitative agreement with the actual clinical performance of both biomarkers. The model may be helpful in future estimation of minimal detectable tumor sizes for novel proteomic biomarker assays if sufficient physiologic data for the biomarker are available. The model may address the potential and limitations of tumor biomarkers, help prioritize biomarkers, and guide investments into early cancer detection research efforts.
Sanjiv Gambhir and colleagues describe a linear one-compartment mathematical model that allows estimation of minimal detectable tumor sizes based on blood tumor biomarker assays.
Editors' Summary
Background.
Cancers—disorganized masses of cells that can occur in any tissue—develop when cells acquire genetic changes that allow them to grow uncontrollably and to spread around the body (metastasize). If a cancer (tumor) is detected when it is small, surgery can often provide a cure. Unfortunately, many cancers (particularly those deep inside the body) are not detected until they are large enough to cause pain or other symptoms by pressing against surrounding tissue. By this time, it may be impossible to remove the original tumor surgically and there may be metastases scattered around the body. In such cases, radiotherapy and chemotherapy can sometimes help, but the outlook for patients whose cancers are detected late is often poor. Consequently, researchers are trying to develop early detection tests for different types of cancer. Many tumors release specific proteins—“cancer biomarkers”—into the blood and the hope is that it might be possible to find sets of blood biomarkers that detect cancers when they are still small and thus save many lives.
Why Was This Study Done?
For most biomarkers, it is not known how the amount of protein detected in the blood relates to tumor size or how sensitive the assays for biomarkers must be to improve patient survival. In this study, the researchers develop a “linear one-compartment” mathematical model to predict how large tumors need to be before blood biomarkers can be used to detect them and test this model using published data on two established cancer biomarkers—CA125 and prostate-specific antigen (PSA). CA125 is used to monitor the progress of patients with ovarian cancer after treatment; ovarian cancer is rarely diagnosed in its early stages and only one-fourth of women with advanced disease survive for 5 y after diagnosis. PSA is used to screen for prostate cancer and has increased the detection of this cancer in its early stages when it is curable.
What Did the Researchers Do and Find?
To develop a model that relates secreted blood biomarker levels to tumor sizes, the researchers assumed that biomarkers mix evenly throughout the patient's blood, that cancer cells secrete biomarkers into the fluid that surrounds them, that 0.1%–20% of these secreted proteins enter the blood at a continuous rate, and that biomarkers are continuously removed from the blood. The researchers then used their model to calculate the smallest tumor sizes that might be detectable with these biomarkers by feeding in existing data on CA125 and on PSA, including assay detection limits and the biomarker secretion rates of cancer cells growing in dishes. When only tumor cells secreted the biomarker and 10% of the secreted biomarker reach the blood, the model predicted that ovarian tumors between 0.11 mm3 (smaller than a grain of salt) and nearly 4,000 mm3 (about the size of a cherry) would be detectable by measuring CA125 blood levels (the range was determined by varying the amount of biomarker secreted by the tumor cells and the assay sensitivity); for prostate cancer, the detectable tumor sizes ranged from similar lower size to about 130 mm3 (pea-sized). However, healthy cells often also secrete small quantities of cancer biomarkers. With this condition incorporated into the model, the estimated detectable tumor sizes (or total tumor burden including metastases) ranged between grape-sized and melon-sized for ovarian cancers and between pea-sized to about grapefruit-sized for prostate cancers.
What Do These Findings Mean?
The accuracy of the calculated tumor sizes provided by the researchers' mathematical model is limited by the lack of data on how tumors behave in the human body and by the many assumptions incorporated into the model. Nevertheless, the model predicts detection limits for ovarian and prostate cancer that broadly mirror the clinical performance of both biomarkers. Somewhat worryingly, the model also indicates that a tumor may have to be very large for blood biomarkers to reveal its presence, a result that could limit the clinical usefulness of biomarkers, especially if they are secreted not only by tumor cells but also by healthy cells. Given this finding, as more information about how biomarkers behave in the human body becomes available, this model (and more complex versions of it) should help researchers decide which biomarkers are likely to improve early cancer detection and patient outcomes.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050170.
The US National Cancer Institute provides a brief description of what cancer is and how it develops and a fact sheet on tumor markers; it also provides information on all aspects of ovarian and prostate cancer for patients and professionals, including information on screening and testing (in English and Spanish)
The UK charity Cancerbackup also provides general information about cancer and more specific information about ovarian and prostate cancer, including the use of CA125 and PSA for screening and follow-up
The American Society of Clinical Oncology offers a wide range of information on various cancer types, including online published articles on the current status of cancer diagnosis and management from the educational book developed by the annual meeting faculty and presenters. Registration is mandatory, but information is free
doi:10.1371/journal.pmed.0050170
PMCID: PMC2517618  PMID: 18715113

Results 1-12 (12)