PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Bioluminescence imaging of therapy response does not correlate with FDG-PET response in a mouse model of Burkitt lymphoma 
Since the development and evaluation of novel anti-cancer therapies require molecular insight in the disease state, both FDG-PET and BLI imaging were evaluated in a Burkitt B-cell lymphoma xenograft model treated with cyclophosphamide or temsirolimus. Daudi xenograft mice were treated with either cyclophosphamide or temsirolimus and imaged with BLI and FDG-PET on d0 (before treatment), d2, d4, d7, d9 and d14 following the start of therapy. Besides tumor volume changes, therapy response was assessed with immunohistochemical analysis (apoptosis). BLI revealed a flare following both therapeutics that was significantly higher when compared to control tumors. FDG-PET decreased immediatelly, long before the tumor reduced in size. Late after therapy, BLI signal intensities decreased significantly compared to baseline subsequent to tumor size reduction while apoptosis was immediately induced following both treatment regimen. Unlike FDG, BLI was not able to reflect reduced levels of viable cells and was not able to predict tumor size response and apoptosis response.
PMCID: PMC3477743  PMID: 23133822
Bioluminescence imaging; therapy response; FDG-PET
2.  Radioiodinated Phenylalkyl Malonic Acid Derivatives as pH-Sensitive SPECT Tracers 
PLoS ONE  2012;7(6):e38428.
Introduction
In vivo pH imaging has been a field of interest for molecular imaging for many years. This is especially important for determining tumor acidity, an important driving force of tumor invasion and metastasis formation, but also in the process of apoptosis.
Methods
2-(4-[123I]iodophenethyl)-2-methylmalonic acid (IPMM), 2-(4-[123I]iodophenethyl)-malonic acid (IPM), 2-(4-[123I]iodobenzyl)-malonic acid (IBMM) and 4-[123I]iodophthalic acid (IP) were radiolabeled via the Cu+ isotopic nucleophilic exchange method. All tracers were tested in vitro in buffer systems to assess pH driven cell uptake. In vivo biodistribution of [123I]IPMM and [123I]IPM was determined in healthy mice and the pH targeting efficacy in vivo of [123I]IPM was evaluated in an anti-Fas monoclonal antibody (mAb) apoptosis model. In addition a mouse RIF-1 tumor model was explored in which tumor pH was decreased from 7.0 to 6.5 by means of induction of hyperglycemia in combination with administration of meta-iodobenzylguanidine.
Results
Radiosynthesis resulted in 15–20% for iodo-bromo exchange and 50–60% yield for iodo-iodo exchange while in vitro experiments showed a pH-sensitive uptake for all tracers. Shelf-life stability and in vivo stability was excellent for all tracers. [123I]IPMM and [123I]IPM showed a moderately fast predominantly biliary clearance while a high retention was observed in blood. The biodistribution profile of [123I]IPM was found to be most favorable in view of pH-specific imaging. [123I]IPM showed a clear pH-related uptake pattern in the RIF-1 tumor model.
Conclusion
Iodine-123 labeled malonic acid derivates such as [123I]IPM show a clearly pH dependent uptake in tumor cells both in vitro and in vivo which allows to visualize regional acidosis. However, these compounds are not suitable for detection of apoptosis due to a poor acidosis effect.
doi:10.1371/journal.pone.0038428
PMCID: PMC3374791  PMID: 22719886
3.  Molecular imaging of therapy response with 18F-FLT and 18F-FDG following cyclophosphamide and mTOR inhibition 
Purpose
Evaluation and comparison of 3’-[18F]-fluoro-3’-deoxy-L-thymidine (FLT) and 2-[18F]-fluoro-2-deoxyglucose (FDG)-PET to monitor early response following both cyclophosphamide and temsirolimus treatment in a mouse model of Burkitt lymphoma.
Methods
Daudi xenograft mice were treated with either cyclophosphamide or temsirolimus and imaged with FLT-PET and FDG-PET on appropriate days post therapy inititiation. Immunohistochemical (IHC) studies (H&E, TUNEL, CD20, PCNA and ki-67) and DNA flow cytometry studies were performed.
Results
FDG tumor uptake decreased immediately after cyclophosphamide treatment while FLT-PET showed only a late and less pronounced decrease. A fast induction of apoptosis was observed together with an early accumulation of cells in the S-phase of the cell cycle, suggesting DNA repair. Temsirolimus treatment reduced both FDG and FLT tumor uptake immediately after therapy and resulted in a fast induction of apoptosis and G0-G1 phase accumulation.
Conclusion
FLT response was less distinct than FDG response and may be controlled by DNA repair early after cyclophosphamide. Nevertheless, FLT-PET was able to reflect decreased proliferation following temsirolimus.
PMCID: PMC3478112  PMID: 23133806
FDG-PET; FLT-PET; Burkitt lymphoma; cyclophosphamide; mTOR inhibition; therapy response

Results 1-3 (3)