Search tips
Search criteria

Results 1-25 (57)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  First Insight into the Genotypic Diversity of Clinical Mycobacterium tuberculosis Isolates from Gansu Province, China 
PLoS ONE  2014;9(6):e99357.
Investigations of Mycobacterium tuberculosis genetic diversity in China have indicated a significant regional distribution. The aim of this study was to characterize the genotypes of clinical M. tuberculosis isolates obtained from Gansu, which has a special geographic location in China.
Methodology/Principal Findings
A total of 467 clinical M. tuberculosis strains isolated in Gansu Province were genotyped by 15-locus mycobacterial interspersed repetitive units–variable number tandem repeats (MIRU-VNTR) and spoligotyping. The results showed that 445 isolates belonged to six known spoligotype lineages, whereas 22 isolates were unknown. The Beijing genotype was the most prevalent (87.58%, n = 409), while the shared type 1 was the dominant genotype (80.94%, n = 378). The second most common lineage was the T lineage, with 25 isolates (5.35%), followed by the H lineage with 5 isolates (1.07%), the MANU family (0.64%, 3 isolates), the U family (0.43%, 2 isolates) and the CAS lineage with 1 isolate (0.21%). By using the VNTR15China method, we observed 15 groups and 228 genotypes among the 467 isolates. We found no association between the five larger groups (including the Beijing genotype) and sex, age, or treatment status, and there was no noticeable difference in the group analysis in different areas. In the present study, seven of the 15 MIRU-VNTR loci were highly or moderately discriminative according to their Hunter-Gaston discriminatory index.
The Beijing genotype is the predominant genotype in Gansu province. We confirm that VNTR15China is suitable for typing Beijing strains in China and that it has a better discriminatory power than spoligotyping. Therefore, the use of both methods is the most suitable for genotyping analysis of M. tuberculosis.
PMCID: PMC4049826  PMID: 24911588
2.  Preparation of phosphorylated starch by dry-heating in the presence of pyrophosphate and its calcium-phosphate solubilizing ability 
Starch was phosphorylated through dry-heating in the presence of pyrophosphate at various conditions, and the characteristics of phosphorylated starch (PS) were examined. Starch phosphorylation increases as the pH increases from 3 to 6, but diminishes at pH 7. Increased temperatures enhance phosphorylation. Data from 31P NMR suggests that starch phosphorylation occurs mainly at the C3-OH and C6-OH of the glucose residue. The phosphate linkage is mainly due to monostarch monophosphate. Although starch had almost no calcium phosphate-solubilising capacity, this capacity was markedly enhanced by phosphorylation. X-ray diffraction analysis indicates that the crystal structure of hydroxyapatite was not present in the calcium phosphate-PS complex.
PMCID: PMC3602575  PMID: 24425953
Phosphorylation; Starch; Dry-heating; Phosphate linkage; Calcium-phosphate solubilising capacity
3.  Estrogen suppresses adipogenesis by inhibiting S100A16 expression 
The aim of this study is to determine the effects of E2 on metabolic syndrome and the molecular mechanisms involving S100A16. Ovariectomized (OVX) rat models and mouse embryonic fibroblasts cell models were used. E2 loss in OVX rats induced body weight gain and central abdominal fat accumulation, which were ameliorated by E2 treatment under chow and high-fat diet (HFD) conditions. E2 decreased the expression of the adipocyte marker genes PPAR γ, aP2, C/EBP α, and S100A16. E2 inhibited adipogenesis. Overexpression of S100A16 reversed the E2-induced adipogenesis effect. A luciferase assay showed that E2 inhibited the expression of S100A16. E2 treatment decreased body weight gain and central abdominal fat accumulation under both chow and HFD conditions. Also, E2 suppressed adipogenesis by inhibiting S100A16 expression.
PMCID: PMC4045221  PMID: 24501224
estrogen; metabolic syndrome; S100A16
4.  Proteomic Approach to Reveal the Proteins Associated with Encystment of the Ciliate Euplotes encysticus 
PLoS ONE  2014;9(5):e97362.
In order to identify and reveal the proteins related to encystment of the ciliate Euplotes encysticus, we analyzed variation in the abundance of the proteins isolated from the resting cyst comparing with proteins in the vegetative cell. 2-D electrophoresis, MALDI-TOF MS techniques and Bioinformatics were used for proteome separation, quantification and identification. The comparative proteomics studies revealed 26 proteins with changes on the expression in the resting cysts, including 12 specific proteins and 14 differential proteins. 12 specific proteins and 10 out of the 14 differential proteins were selected and identified by MALDI-TOF MS. The identified specific proteins with known functions included type II cytoskeletal 1, keratin, Nop16 domain containing protein, protein arginine n-methyltransferase, epsilon-trimethyllysine hydroxylase and calpain-like protein. The identified differential proteins with known functions included Lysozyme C, keratinocyte growth factor, lysozyme homolog AT-2, formate acetyltransferase, alpha S1 casein and cold-shock protein. We discussed the functions of these proteins as well as their contribution in the process of encystment. These identified proteins covered a wide range of molecular functions, including gene regulation, RNA regulation, proteins degradation and oxidation resistance, stress response, material transport and cytoskeleton organization. Therefore, differential expression of these proteins was essential for cell morphological and physiological changes during encystment. This suggested that the peculiar proteins and differential proteins might play important roles in the process of the vegetative cells transforming into the resting cysts. These observations may be novel findings that bring new insights into the detailed mechanisms of dormancy.
PMCID: PMC4023950  PMID: 24837719
5.  Lipocalin 2 Expression and Secretion Is Highly Regulated by Metabolic Stress, Cytokines, and Nutrients in Adipocytes 
PLoS ONE  2014;9(5):e96997.
Lipocalin 2 (Lcn2) has been recently characterized as a new adipokine having a role in innate immunity and energy metabolism. Nonetheless, the metabolic regulation of Lcn2 production in adipocytes has not been comprehensively studied. To better understand the Lcn2 biology, we investigated the regulation of Lcn2 expression in adipose tissue in response to metabolic stress in mice as well as the control of Lcn2 expression and secretion by cytokines and nutrients in 3T3-L1 adipocytes. Our results showed that the mRNA expression of Lcn2 was upregulated in white and brown adipose tissues as well as liver during fasting and cold stress in mice. Among pro-inflammatory cytokines TNFα, IL-1β, and IL-6, IL-1β showed most profound effect on Lcn2 expression and secretion in 3T3-L1 adipocytes. Insulin stimulated Lcn2 expression and secretion in a dose-dependent manner; this insulin effect was significantly abolished in the presence of low concentration of glucose. Moreover, insulin-stimulated Lcn2 expression and secretion was also attenuated when glucose was replaced by 3-O-methyl-d-glucose or by blocking NFκB pathway activation. Additionally, we showed that palmitate and oleate induced Lcn2 expression and secretion more significantly than EPA, while phytanic acid reduced Lcn2 production. Our results demonstrated that Lcn2 production in adipocytes is highly responsive to metabolic stress, cytokines, and nutrient signals, suggesting an important role of Lcn2 in adipocyte metabolism and inflammation.
PMCID: PMC4018437  PMID: 24818605
6.  Low-Intensity Pulsed Ultrasound Stimulation Facilitates Osteogenic Differentiation of Human Periodontal Ligament Cells 
PLoS ONE  2014;9(4):e95168.
Human periodontal ligament cells (hPDLCs) possess stem cell properties, which play a key role in periodontal regeneration. Physical stimulation at appropriate intensities such as low-intensity pulsed ultrasound (LIPUS) enhances cell proliferation and osteogenic differentiation of mesechymal stem cells. However, the impacts of LIPUS on osteogenic differentiation of hPDLCs in vitro and its molecular mechanism are unknown. This study was undertaken to investigate the effects of LIPUS on osteogenic differentiation of hPDLCs. HPDLCs were isolated from premolars of adolescents for orthodontic reasons, and exposed to LIPUS at different intensities to determine an optimal LIPUS treatment dosage. Dynamic changes of alkaline phosphatase (ALP) activities in the cultured cells and supernatants, and osteocalcin production in the supernatants after treatment were analyzed. Runx2 and integrin β1 mRNA levels were assessed by reverse transcription polymerase chain reaction analysis after LIPUS stimulation. Blocking antibody against integrinβ1 was used to assess the effects of integrinβ1 inhibitor on LIPUS-induced ALP activity, osteocalcin production as well as calcium deposition. Our data showed that LIPUS at the intensity of 90 mW/cm2 with 20 min/day was more effective. The ALP activities in lysates and supernatants of LIPUS-treated cells started to increase at days 3 and 7, respectively, and peaked at day 11. LIPUS treatment significantly augmented the production of osteocalcin after day 5. LIPUS caused a significant increase in the mRNA expression of Runx2 and integrin β1, while a significant decline when the integrinβ1 inhibitor was used. Moreover, ALP activity, osteocalcin production as well as calcium nodules of cells treated with both daily LIPUS stimulation and integrinβ1 antibody were less than those in the LIPUS-treated group. In conclusion, LIPUS promotes osteogenic differentiation of hPDLCs, which is associated with upregulation of Runx2 and integrin β1, which may thus provide therapeutic benefits in periodontal tissue regeneration.
PMCID: PMC3990585  PMID: 24743551
7.  Human Urine-Derived Stem Cells Alone or Genetically-Modified with FGF2 Improve Type 2 Diabetic Erectile Dysfunction in a Rat Model 
PLoS ONE  2014;9(3):e92825.
The aim of this study was to determine the possibility of improving erectile dysfunction using cell therapy with either human urine-derived stem cells (USCs) or USCs genetically-modified with FGF2 in a type 2 diabetic rat model.
Human USCs were collected from 3 healthy donors. USCs were transfected with FGF2 (USCs-FGF2). Sixty-five SD male rats were divided into five groups (G). A control group of normal rats (G1, n = 10), and four other test groups of type 2 diabetic erectile dysfunction rats: PBS as a negative control (G2, n = 10), USCs (G3, n = 15), lentivirus-FGF2 (G4, n = 15), and USCs-FGF2 (G5, n = 15). Diabetes was induced in the rats via a high fat diet for 28 days and a subsequent intraperitoneal injection of streptozotocin (35 mg/kg). Erectile dysfunction was screened with apomorphine (100 μg/kg). Cell injections in the test groups (G2–G5) occurred directly into the corpora cavernosa. The implanted cells were tracked at 7 days (n = 5 animals/G) and 28 days (n = 10 animals/G) post injection. Mean arterial pressure (MAP), intracavernosal pressure (ICP), expression of endothelial markers (CD31, VEGF and eNOS), smooth muscle markers (desmin and smoothelin), histological changes and erectile function were assessed for each group.
USCs expressed mesenchymal stem cell markers, and secreted a number of proangiogenic growth factors. USCs expressed endothelial cell markers (CD31 and vWF) after transfection with FGF2. Implanted USCs or USCs-FGF2 displayed a significantly raised ICP and ICP/MAP ratio (p<0.01) 28 days after intracavernous injection. Although few cell were detected within the implanted sites, histological and western blot analysis demonstrated an increased expression of endothelial and smooth muscle markers within the cavernous tissue following USC or USC-FGF2 injection.
The paracrine effect of USCs or USCs-FGF2 induced improvement of erectile function in type 2 diabetic rats by recruiting resident cells and increasing the endothelial expression and contents of smooth muscle.
PMCID: PMC3963968  PMID: 24663037
8.  Altered Expression Profile of Renal α1D-Adrenergic Receptor in Diabetes and Its Modulation by PPAR Agonists 
Journal of Diabetes Research  2014;2014:725634.
Alpha1D-adrenergic receptor (α1D-AR) plays important roles in regulating physiological and pathological responses mediated by catecholamines, particularly in the cardiovascular and urinary systems. The present study was designed to investigate the expression profile of α1D-AR in the diabetic kidneys and its modulation by activation of peroxisome proliferator-activated receptors (PPARs). 12-week-old Zucker lean (ZL) and Zucker diabetic fatty (ZD) rats were treated with fenofibrate or rosiglitazone for 8–10 weeks. Gene microarray, real-time PCR, and confocal immunofluorescence microscopy were performed to assess mRNA and protein expression of α1D-AR in rat kidney tissue. Using microarray, we found that α1D-AR gene was dramatically upregulated in 22-week-old ZD rats compared to ZL controls. Quantitative PCR analysis verified a 16-fold increase in α1D-AR mRNA in renal cortex from ZD animals compared to normal controls. Chronic treatment with fenofibrate or rosiglitazone reduced renal cortical α1D-AR gene. Immunofluorescence staining confirmed that α1D-AR protein was induced in the glomeruli and tubules of diabetic rats. Moreover, dual immunostaining for α1D-AR and kidney injury molecule-1 indicated that α1D-AR was expressed in dedifferentiated proximal tubules of diabetic Zucker rats. Taken together, our results show that α1D-AR expression is upregulated in the diabetic kidneys. PPAR activation suppressed renal expression of α1D-AR in diabetic nephropathy.
PMCID: PMC3977090  PMID: 24772448
9.  Expression analysis of genes and pathways associated with liver metastases of the uveal melanoma 
BMC Medical Genetics  2014;15:29.
Uveal melanoma is an aggressive cancer which has a high percentage metastasizing to the liver, with a worse prognosis. Identification of patients at high risk of metastases may provide information for early detection of metastases and treatment.
Expression profiling of ocular tumor tissues from 46 liver metastatic uveal melanoma samples and 45 non-metastatic uveal melanoma samples were got from GEO database. Bioinformatic analyses such as the Gene Oncology and Kyoto Encyclopedia of Genes and Genomes were used to identify genes and pathways specifically associated with liver metastases of the uveal melanoma.
A total of 1138 probes were differentially expressed in two group samples. All differential gene interactions in the Signal-Net were analyzed. Of them, 768 probes were up-regulated and 370 down-regulated. They mainly participated in 125 GO terms and 16 pathways. Of the genes differentially expressed between two group cancers, HTR2B, CHL1, the ZNF family, YWHAZ and FYN were the most significantly altered.
Bioinformatics may help excavate and analyze large amounts of data in microarrays by means of rigorous experimental planning, scientific statistical analysis and collection of complete data about liver metastases of uveal melanoma patients. In the present study, a novel differential gene expression pattern was constructed and advanced study will provide new targets for diagnosis and mechanism of uveal melanoma liver metastases.
PMCID: PMC4015751  PMID: 24597767
Uveal melanoma; Liver metastases; Gene expression; GO analysis; Pathway analysis
10.  Cell-Seeded Tubularized Scaffolds for Reconstruction of Long Urethral Defects: A Preclinical Study 
European urology  2012;63(3):531-538.
The treatment options for patients requiring repair of a long segment of the urethra are limited by the availability of autologous tissues. We previously reported that acellular collagen-based tubularized constructs seeded with cells are able to repair small urethral defects in a rabbit model.
We explored the feasibility of engineering clinically relevant long urethras for surgical reconstruction in a canine preclinical model.
Design, setting, and participants
Autologous bladder epithelial and smooth muscle cells from 15 male dogs were grown and seeded onto preconfigured collagen-based tubular matrices (6 cm in length). The perineal urethral segment was removed in 21 male dogs. Urethroplasties were performed with tubularized collagen scaffolds seeded with cells in 15 animals. Tubularized constructs without cells were implanted in six animals. Serial urethrography and three-dimensional computed tomography (CT) scans were performed pre- and postoperatively at 1, 3, 6, and 12 mo. The animals were euthanized at their predetermined time points (three animals at 1 mo, and four at 3, 6, and 12 mo) for analyses.
Outcome measurements and statistical analysis
Statistical analysis of CT imaging and histology was not needed.
Results and limitations
CT urethrograms showed wide-caliber urethras without strictures in animals implanted with cell-seeded matrices. The urethral segments replaced with acellular scaffolds collapsed. Gross examination of the urethral implants seeded with cells showed normal-appearing tissue without evidence of fibrosis. Histologically, an epithelial cell layer surrounded by muscle fiber bundles was observed on the cell-seeded constructs, and cellular organization increased over time. The epithelial and smooth muscle phenotypes were confirmed using antibodies to pancytokeratins AE1/AE3 and smooth muscle–specific desmin. Formation of an epithelial cell layer occurred in the unseeded constructs, but few muscle fibers formed.
Cell-seeded tubularized collagen scaffolds can be used to repair long urethral defects, whereas scaffolds without cells lead to poor tissue development and strictures. This study demonstrates that long tissue-engineered tubularized urethral segments may be used for urethroplasty in patients.
PMCID: PMC3554849  PMID: 22877501
Urethra; Stricture repair; Cell-seeded tubularized urethra reconstruction; Tissue-engineered urethra
11.  Identification of a Pseudomonas sp. that Inhibits RHL System of Quorum Sensing 
Indian Journal of Microbiology  2013;53(1):28-35.
The production of many Pseudomonas aeruginosa virulence factors and secondary metabolites is regulated in concert with cell density by quorum sensing (QS). Therefore, strategies designed to inhibit QS are promising for the control of diseases. Here, we succeeded in isolating soil bacteria (56 out of 7,000 isolates) capable of inhibiting violacein production by Chromobacterium violaceum CV026. We focused on an isolate identified as a Pseudomonas sp. based on its 16S rRNA nucleotide sequence. A partially purified inhibitor factor(s) derived from culture supernatants consisted of at least three major components by HPLC analysis. A more highly purified preparation (16 μg/ml) specifically inhibited rhl-controlled pyocyanin and rhamnolipid production by wild type P. aeruginosa PAO1 (PAO1) and a QS double mutant PAO-MW1, without affecting growth. A significant inhibitory effect on elastase, protease and biofilm was also observed. These results provide compelling evidence that the inhibitor(s) interferes with the QS system. The identities of the inhibitors remain to be established.
PMCID: PMC3587504  PMID: 24426075
Pseudomonas aeruginosa; Quorum sensing; Rhl system; Screening
12.  Salvia miltiorrhiza Injection Ameliorates Renal Damage Induced by Lead Exposure in Mice 
The Scientific World Journal  2014;2014:572697.
Exposure to lead (Pb) can induce kidney injury and our recent studies have found that Salvia miltiorrhiza (SM) injection, a traditional Chinese medicine, could protect against the organ injury induced by iron overload. This study was designed to investigate the protective effects of SM injection on nephrotoxicity induced by Pb acetate in mice and to elucidate the potential mechanism(s). Healthy male mice were randomly divided into four groups: control, Pb, low-dose Salvia miltiorrhiza (L-SM), and high-dose Salvia miltiorrhiza (H-SM). SM injection dose dependently reduced the Pb accumulation in the kidney, decreased kidney coefficients, and ameliorated renal structure and function from the morphology analysis. Meanwhile, SM administration downregulated serum levels of blood urea nitrogen (BUN) and creatinine (CR), decreased malondialdehyde (MAD) content, and increased activities of super oxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the kidney homogenate. Moreover, SM injection reduced the level of renal apoptosis by immunohistochemical staining analysis. Our findings implicate the therapeutic potential of SM injection for Pb-induced nephrotoxicity, which were at least partly due to the decrease of Pb accumulation, inhibition of lipid peroxidation, and suppression of renal apoptosis. These results provided preliminary experimental support for Danshen as a therapeutic drug for Pb poisoning diseases.
PMCID: PMC3947665  PMID: 24696648
13.  Comparison of ESWL and Ureteroscopic Holmium Laser lithotripsy in Management of Ureteral Stones 
PLoS ONE  2014;9(2):e87634.
There are many options for urologists to treat ureteral stones that range from 8 mm to 15 mm, including ESWL and ureteroscopic holmium laser lithotripsy. While both ESWL and ureteroscopy are effective and minimally invasive procedures, there is still controversy over which one is more suitable for ureteral stones.
To perform a retrospective study to compare the efficiency, safety and complications using ESWL vs. ureteroscopic holmium laser lithotripsy in management of ureteral stones.
Between October 2010 and October 2012, 160 patients who underwent ESWL or ureteroscopic holmium laser lithotripsy at Suzhou municipal hospital for a single radiopaque ureteral stone (the size 8–15 mm) were evaluated. All patients were followed up with ultrasonography for six months. Stone clearance rate, costs and complications were compared.
Similarity in stone clearance rate and treatment time between the two procedures; overall procedural time, analgesia requirement and total cost were significantly different. Renal colic and gross hematuria were more frequent with ESWL while voiding symptoms were more frequent with ureteroscopy. Both procedures used for ureteral stones ranging from 8 to 15 mm were safe and minimally invasive.
ESWL remains first line therapy for proximal ureteral stones while ureteroscopic holmium laser lithotripsy costs more. To determining which one is preferable depends on not only stone characteristics but also patient acceptance and cost-effectiveness ratio.
PMCID: PMC3912003  PMID: 24498344
14.  Comparison of Decellularization Protocols for Preparing a Decellularized Porcine Annulus Fibrosus Scaffold 
PLoS ONE  2014;9(1):e86723.
Tissue-specific extracellular matrix plays an important role in promoting tissue regeneration and repair. We hypothesized that decellularized annular fibrosus matrix may be an appropriate scaffold for annular fibrosus tissue engineering. We aimed to determine the optimal decellularization method suitable for annular fibrosus. Annular fibrosus tissue was treated with 3 different protocols with Triton X-100, sodium dodecyl sulfate (SDS) and trypsin. After the decellularization process, we examined cell removal and preservation of the matrix components, microstructure and mechanical function with the treatments to determine which method is more efficient. All 3 protocols achieved decellularization; however, SDS or trypsin disturbed the structure of the annular fibrosus. All protocols maintained collagen content, but glycosaminoglycan content was lost to different degrees, with the highest content with TritonX-100 treatment. Furthermore, SDS decreased the tensile mechanical property of annular fibrosus as compared with the other 2 protocols. MTT assay revealed that the decellularized annular fibrosus was not cytotoxic. Annular fibrosus cells seeded into the scaffold showed good viability. The Triton X-100–treated annular fibrosus retained major extracellular matrix components after thorough cell removal and preserved the concentric lamellar structure and tensile mechanical properties. As well, it possessed favorable biocompatibility, so it may be a suitable candidate as a scaffold for annular fibrosus tissue engineering.
PMCID: PMC3901704  PMID: 24475172
15.  Skeletal Myogenic Differentiation of Urine-Derived Stem Cells and Angiogenesis Using Microbeads Loaded with Growth Factors 
Biomaterials  2012;34(4):1311-1326.
To provide site-specific delivery and targeted release of growth factors to implanted urine-derived stem cells (USCs), we prepared microbeads of alginate containing growth factors. The growth factors included VEGF, IGF-1, FGF-1, PDGF, HGF and NGF. Radiolabeled growth factors were loaded separately and used to access the in vitro release from the microbeads with a gamma counter over 4 weeks. In vitro endothelial differentiation of USCs by the released VEGF from the microbeads in a separate experiment confirmed that the released growth factors from the microbeads were bioactive. USCs and microbeads were mixed with the collagen gel type 1 (2 mg/ml) and used for in vivo studies through subcutaneous injection into nude mice. Four weeks after subcutaneous injection, we found that grafted cell survival was improved and more cells expressed myogenic and endothelial cell transcripts and markers compared to controls. More vessel formation and innervations were observed in USCs combined with six growth factors cocktail incorporated in microbeads compared to controls. In conclusion, a combination of growth factors released locally from the alginate microbeads induced USCs to differentiate into a myogenic lineage, enhanced revascularization and innervation, and stimulated resident cell growth in vivo. This approach could potentially be used for cell therapy in the treatment of stress urinary incontinence.
PMCID: PMC3513922  PMID: 23137393
Drug delivery; Stem cells; Alginate microbeads; Controlled release; Growth factors
16.  Coadministration of Platelet-Derived Growth Factor-BB and Vascular Endothelial Growth Factor with Bladder Acellular Matrix Enhances Smooth Muscle Regeneration and Vascularization for Bladder Augmentation in a Rabbit Model 
Tissue Engineering. Part A  2012;19(1-2):264-276.
Tissue-engineering techniques have brought a great hope for bladder repair and reconstruction. The crucial requirements of a tissue-engineered bladder are bladder smooth muscle regeneration and vascularization. In this study, partial rabbit bladder (4×5 cm) was removed and replaced with a porcine bladder acellular matrix (BAM) that was equal in size. BAM was incorporated with platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF) in the experimental group while with no bioactive factors in the control group. The bladder tissue strip contractility in the experimental rabbits was better than that in the control ones postoperation. Histological evaluation revealed that smooth muscle regeneration and vascularization in the experimental group were significantly improved compared with those in the control group (p<0.05), while multilayered urothelium was formed in both groups. Muscle strip contractility of neobladder in the experimental group exhibited significantly better than that in the control (p<0.05) assessed with electrical field stimulation and carbachol interference. The activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 in the native bladder tissue around tissue-engineered neobladder in the experimental group was significantly higher than that in the control (p<0.05). This work suggests that smooth muscle regeneration and vascularization in tissue-engineered neobladder and recovery of bladder function could be enhanced by PDGF-BB and VEGF incorporated within BAM, which promoted the upregulation of the activity of MMP-2 and MMP-9 of native bladder tissue around the tissue-engineered neobladder.
PMCID: PMC3530949  PMID: 22894544
17.  Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro 
The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS) on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%), or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X) and glycosaminoglycan (GAG) expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype)/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS) in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan) and hypertrophy (i.e., lower mRNA expression of Col X and MMP13). In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.
PMCID: PMC3907884  PMID: 24451136
insulin-transferrin-selenium; auricular chondrocyte; dedifferentiation; hypertrophy; serum; engineered cartilage
18.  Insulin Resistance Is an Independent Determinate of ED in Young Adult Men 
PLoS ONE  2013;8(12):e83951.
Insulin resistance (IR) triggers endothelial dysfunction, which contributes to erectile dysfunction (ED) and cardiovascular disease.
To evaluate whether IR was related to ED in young adult patients.
A total of 283 consecutive men complaining of ED at least six months were enrolled, with a full medical history, physical examination, and laboratory tests collected. Quantitative Insulin Sensitivity Check Index (QUICKI) was used to determine IR. The severity of ED was assessed by IIEF-5 questionnaire. Endothelial function was assessed by ultrasonographic examination of brachial artery flow mediated dilation (FMD).
IR was detected in 52% patients. Subjects with IR had significant higher total cholesterol, triglycerides, low density lipoprotein-cholesterol (LDL-c), glycated haemoglobin (HBA1c), high sensitivity C-reactive protein (hs-CRP) and body mass index (BMI), but showed significant lower IIEF-5 score, FMD%, high density lipoprotein -cholesterol (HDL-c), testosterone, sex hormone binding globulin (SHBG) levels than patients without IR. Multiple regression analysis showed QUICKI and testosterone were independent predictors of IIEF-5 score. Furthermore, the incidence of IR was correlated with the severity of ED.
Compared with other CVFs, IR was found as the most prevalent in our subjects. Besides, IR was independently associated with ED and its severity, suggesting an adverse effect of insulin resistance on erectile function.
PMCID: PMC3877124  PMID: 24391852
19.  OsNRAMP3 Is a Vascular Bundles-Specific Manganese Transporter That Is Responsible for Manganese Distribution in Rice 
PLoS ONE  2013;8(12):e83990.
Manganese (Mn) is an essential trace element for plants. Recently, the genes responsible for uptake of Mn in plants were identified in Arabidopsis and rice. However, the mechanism of Mn distribution in plants has not been clarified. In the present study we identified a natural resistance-associated macrophage protein (NRAMP) family gene in rice, OsNRAMP3, involved in Mn distribution. OsNRAMP3 encodes a plasma membrane-localized protein and was specifically expressed in vascular bundles, especially in phloem cells. Yeast complementation assay showed that OsNRAMP3 is a functional Mn-influx transporter. When OsNRAMP3 was absent, rice plants showed high sensitivity to Mn deficiency. Serious necrosis appeared on young leaves and root tips of the OsNRAMP3 knockout line cultivated under low Mn conditions, and high Mn supplies could rescue this phenotype. However, the necrotic young leaves of the knockout line possessed similar levels of Mn to the wild type, suggesting that the necrotic appearance was caused by disturbed distribution of Mn but not a general Mn shortage. Additionally, compared with wild type, leaf Mn content in osnramp3 plants was mostly in older leaves. We conclude that OsNRAMP3 is a vascular bundle-localized Mn-influx transporter involved in Mn distribution and contributes to remobilization of Mn from old to young leaves.
PMCID: PMC3877151  PMID: 24391861
20.  Intravesical Resiniferatoxin for the Treatment of Storage Lower Urinary Tract Symptoms in Patients with Either Interstitial Cystitis or Detrusor Overactivity: A Meta-Analysis 
PLoS ONE  2013;8(12):e82591.
While Resin­iferatoxin (RTX) has been widely used for patients with storage lower urinary tract symptoms (LUTS), its clinical efficiency hasn't yet been well evaluated. A meta-analysis was performed to evaluate the exact roles of intravesical RTX for the treatment of storage LUTS in patients with either interstitial cystitis (IC) or detrusor overactivity (DO).
A meta-analysis of RTX treatment was performed through a comprehensive search of the literature. In total, 2,332 records were initially recruited, 1,907 from Elsevier, 207 from Medline and 218 from the Web of Science. No records were retrieved from the Embase or Cochrane Library. Seven trials with 355 patients were included and one trial was excluded because of the lack of extractable data. The analyses were all performed using RevMan 5.1 and MIX 2.0.
Bladder pain was significantly reduced after RTX therapy in patients with either IC or DO. The average decrease of the visual an alogue pain scale was 0.42 after RTX treatment (p = 0.02). The maximum cystometric capacity (MCC) was significantly increased in patients with DO (MCC increase, 53.36 ml, p = 0.006) but not in those with IC (MCC increase, −19.1 ml, p = 0.35). No significant improvement in urinary frequency, nocturia, incontinence or the first involuntary detrusor contraction (FDC) was noted after RTX therapy (p = 0.06, p = 0.52, p = 0.19 and p = 0.41, respectively).
RTX could significantly reduce bladder pain in patients with either IC or DO, and increase MCC in patients with DO; however, no significant improvement was observed in frequency, nocturia, incontinence or FDC. Given the limitations in the small patient size and risk of bias in the included trials, great caution should be taken when intravesical RTX is used before a large, multicenter, well-designed random control trial with a long-term follow-up is carried out to further assess the clinical efficacy of RTX in in patients with storage LUTS.
PMCID: PMC3869704  PMID: 24376550
21.  Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors 
Scientific Reports  2013;3:3310.
Clinopyroxenes along the Jervisite (NaScSi2O6) – Diopside (CaMgSi2O6) join have been studied, and a solid-solution of the type (Na1−xCax)(Sc1−xMgx)Si2O6 has been identified in the full range of 0 ≤ x ≤ 1. The powder X-ray patterns of all the phases indicate a structural similarity to the end compounds and show smooth variation of structural parameters with composition. The linear structural evolution of iso-structural (Na1−xCax)(Sc1−xMgx)Si2O6 solid-solutions obeying Vegard's rule has also been examined and verified by high resolution transmission electron microscopy (HRTEM). The continuous solid-solutions show the same structural type, therefore the photoluminescence spectra of Eu2+ doped samples possess the superposition of spectral features from blue-emitting component (CaMgSi2O6:Eu2+) and yellow-emitting one (NaScSi2O6:Eu2+). This indicates that the spectroscopic properties of (Na1−xCax)(Sc1−xMgx)Si2O6 clinopyroxene solid-solutions are in direct relations with structural parameters, and it is helpful for designing color-tunable photoluminescence with predetermined parameters.
PMCID: PMC3837361  PMID: 24264556
22.  Upregulation of Long Noncoding RNA SPRY4-IT1 Modulates Proliferation, Migration, Apoptosis, and Network Formation in Trophoblast Cells HTR-8SV/neo 
PLoS ONE  2013;8(11):e79598.
SPRY4-IT1 has been reported to have extremely high expression in normal placenta tissues. It is a Long noncoding RNA (lncRNA), which is associated with cell growth, migration, invasion, and apoptosis in melanoma. A 2.8-fold increase of SPRY4-IT1 expression was validated by Real-time reverse transcription-polymerase chain reaction (qRT-PCR) in severe preeclamptic placenta as compared with that of the normal ones (n=25) in this study. Furthermore, the role of SPRY4-IT1 in proliferation, migration, apoptosis, and network formation ability of trophoblast cells HTR-8/SVneo was assessed. Suppression of SPRY4-IT1 using siRNA treatment and its overexpression using plasmid targeting SPRY4-IT1 were performed in order to explore the biological function of SPRY4-IT1 in the development and progression of trophoblast cells HTR-8/SVneo, in vitro. The results showed that SPRY4-IT1 knockdown enhanced the cell migration and proliferation, and reduced the response of cells to apoptosis. However, exogenous SPRY4-IT1 overexpression significantly decreased the cell migration and proliferation, while increased cell apoptosis. Our study showed for the first time that aberrant expression of lncRNA SPRY4-IT1 might contribute to the abnormal condition of trophoblast cells HTR-8/SVneo. Therefore, we proposed SPRY4-IT1 as a novel lncRNA molecule, which might be associated with the pathogenesis of preeclampsia and might provide a new target for its early diagnosis and treatment.
PMCID: PMC3819274  PMID: 24223182
23.  Cytokine Combination Therapy Prediction for Bone Remodeling in Tissue Engineering Based on the Intracellular Signaling Pathway 
Biomaterials  2012;33(33):8265-8276.
The long-term performance of tissue-engineered bone grafts is determined by a dynamic balance between bone regeneration and resorption. We proposed using embedded cytokine slow-releasing hydrogels to tune this balance toward a desirable final bone density. In this study we established a systems biology model, and quantitatively explored the combinatorial effects of delivered cytokines from hydrogels on final bone density. We hypothesized that: 1) bone regeneration was driven by transcription factors Runx2 and Osterix, which responded to released cytokines, such as Wnt, BMP2, and TGFβ, drove the development of osteoblast lineage, and contributed to bone mass generation; and 2) the osteoclast lineage, on the other hand, governed the bone resorption, and communications between these two lineages determined the dynamics of bone remodeling. In our model, Intracellular signaling pathways were represented by ordinary differential equations, while the intercellular communications and cellular population dynamics were modeled by stochastic differential equations. Effects of synergistic cytokine combinations were evaluated by Loewe index and Bliss index. Simulation results revealed that the Wnt/BMP2 combinations released from hydrogels showed best control of bone regeneration and synergistic effects, and suggested optimal dose ratios of given cytokine combinations released from hydrogels to most efficiently control the long-term bone remodeling. We revealed the characteristics of cytokine combinations of Wnt/BMP2 which could be used to guide the design of in vivo bone scaffolds and the clinical treatment of some diseases such as osteoporosis.
PMCID: PMC3444627  PMID: 22910219
Bone tissue engineering; Bone remodeling; Cytokine combination therapy; Systems biology; Osteogenic differentiation; Signaling pathway
24.  Diversity of Virophages in Metagenomic Data Sets 
Journal of Virology  2013;87(8):4225-4236.
Virophages, e.g., Sputnik, Mavirus, and Organic Lake virophage (OLV), are unusual parasites of giant double-stranded DNA (dsDNA) viruses, yet little is known about their diversity. Here, we describe the global distribution, abundance, and genetic diversity of virophages based on analyzing and mapping comprehensive metagenomic databases. The results reveal a distinct abundance and worldwide distribution of virophages, involving almost all geographical zones and a variety of unique environments. These environments ranged from deep ocean to inland, iced to hydrothermal lakes, and human gut- to animal-associated habitats. Four complete virophage genomic sequences (Yellowstone Lake virophages [YSLVs]) were obtained, as was one nearly complete sequence (Ace Lake Mavirus [ALM]). The genomes obtained were 27,849 bp long with 26 predicted open reading frames (ORFs) (YSLV1), 23,184 bp with 21 ORFs (YSLV2), 27,050 bp with 23 ORFs (YSLV3), 28,306 bp with 34 ORFs (YSLV4), and 17,767 bp with 22 ORFs (ALM). The homologous counterparts of five genes, including putative FtsK-HerA family DNA packaging ATPase and genes encoding DNA helicase/primase, cysteine protease, major capsid protein (MCP), and minor capsid protein (mCP), were present in all virophages studied thus far. They also shared a conserved gene cluster comprising the two core genes of MCP and mCP. Comparative genomic and phylogenetic analyses showed that YSLVs, having a closer relationship to each other than to the other virophages, were more closely related to OLV than to Sputnik but distantly related to Mavirus and ALM. These findings indicate that virophages appear to be widespread and genetically diverse, with at least 3 major lineages.
PMCID: PMC3624350  PMID: 23408616
25.  Danshen (Salvia miltiorrhiza) Injection Suppresses Kidney Injury Induced by Iron Overload in Mice 
PLoS ONE  2013;8(9):e74318.
Excessive iron can accumulate in the kidney and induce tissue damage. Danshen (Salvia miltiorrhiza) injection is a traditional Chinese medicinal preparation used for preventing and treating chronic renal failure. The aim of the present study was to evaluate the effects of treatment with Danshen injection on iron overload-induced kidney damage.
Mice were mock-treated with saline (control group) or given a single dose of iron dextran without treatment (iron overload group, 50 mg/kg/day for 2 weeks) or with daily treatments of low-dose Danshen (3 g/kg/day), high-dose Danshen (6 g/kg/day) or deferoxamine (100 mg/kg/day).
Treatment of iron-overloaded mice with Danshen injection led to significant improvements of body weight and decreased iron levels in the kidney. Danshen injection treatment also reduced concentrations of blood urea nitrogen, creatinine and malondialdehyde and enhanced glutathione peroxidase and superoxide dismutase activities. Histopathological examinations showed that Danshen injection ameliorated pathological changes and reduced iron deposition in kidneys of iron overloaded mice. Furthermore, the treatment was demonstrated to suppress apoptosis in nephrocytes.
These results indicated that Danshen injection exerted significant renal protective effects in iron-overloaded mice, which were closely associated with the decrease of iron deposition and suppression of lipid peroxidation and apoptosis in the kidney.
PMCID: PMC3774616  PMID: 24066136

Results 1-25 (57)