PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Effects of MCF2L2, ADIPOQ and SOX2 genetic polymorphisms on the development of nephropathy in type 1 Diabetes Mellitus 
BMC Medical Genetics  2010;11:116.
Background
MCF2L2, ADIPOQ and SOX2 genes are located in chromosome 3q26-27, which is linked to diabetic nephropathy (DN). ADIPOQ and SOX2 genetic polymorphisms are found to be associated with DN. In the present study, we first investigated the association between MCF2L2 and DN, and then evaluated effects of these three genes on the development of DN.
Methods
A total of 1177 type 1 diabetes patients with and without DN from the GoKinD study were genotyped with TaqMan allelic discrimination. All subjects were of European descent.
Results
Leu359Ile T/G variant in the MCF2L2 gene was found to be associated with DN in female subjects (P = 0.017, OR = 0.701, 95%CI 0.524-0.938) but not in males. The GG genotype carriers among female patients with DN had tendency decreased creatinine and cystatin levels compared to the carriers with either TT or TG genotypes. This polymorphism MCF2L2-rs7639705 together with SNPs of ADIPOQ-rs266729 and SOX2-rs11915160 had combined effects on decreased risk of DN in females (P = 0.001).
Conclusion
The present study provides evidence that MCF2L2, ADIPOQ and SOX2 genetic polymorphisms have effects on the resistance of DN in female T1D patients, and suggests that the linkage with DN in chromosome 3q may be explained by the cumulated genetic effects.
doi:10.1186/1471-2350-11-116
PMCID: PMC2919463  PMID: 20667095
2.  Evaluation of Genetic Association and Expression Reduction of TRPC1 in the Development of Diabetic Nephropathy 
American journal of nephrology  2008;29(3):244-251.
Background/Aims
The TRPC1 gene on chromosome 3q22–24 resides within the linkage region for diabetic nephropa-thy (DN) in type 1 (T1D) and type 2 diabetes mellitus (T2D). A recent study has demonstrated that TRPC1 expression is reduced in the kidney of diabetic ZDF- and STZ-treated rats. The present study aimed to evaluate the genetic and functional role of TRPC1 in the development of DN.
Methods
Genetic association study was performed with two independent cohorts, including 1,177 T1D European Americans with or without DN from GoKinD population and 850 African-American subjects with T2D-associated end-stage renal disease (ESRD), or with hypertensive (non-diabetic) ESRD, and nondiabetic controls. Seven tag SNP markers derived from HapMap data (phase II) were genotyped. TRPC1 gene expression was examined using real time RT-PCR.
Results
No significant association of TRPC1 DNA polymorphisms with DN or ERSD was found in GoKinD and African-American populations. TRPC1 gene mRNA expression in kidney was found to be trendily reduced in 12-week and significantly in 26-week-old db/db mice.
Conclusions
TRPC1 genetic polymorphism may not fundamentally contribute to the development of DN, while reduction of the gene expression in kidney may be a late phenomenon of DN as seen in diabetic animal models.
doi:10.1159/000157627
PMCID: PMC2698220  PMID: 18802326
TRPC1 gene; Single-nucleotide polymorphism; Diabetic nephropathy; End-stage renal disease; Diabetes types 1 and 2
3.  Evaluation of Genetic Association and Expression Reduction of TRPC1 in the Development of Diabetic Nephropathy 
American Journal of Nephrology  2008;29(3):244-251.
Background/Aims
The TRPC1 gene on chromosome 3q22–24 resides within the linkage region for diabetic nephropathy (DN) in type 1 (T1D) and type 2 diabetes mellitus (T2D). A recent study has demonstrated that TRPC1 expression is reduced in the kidney of diabetic ZDF- and STZ-treated rats. The present study aimed to evaluate the genetic and functional role of TRPC1 in the development of DN.
Methods
Genetic association study was performed with two independent cohorts, including 1,177 T1D European Americans with or without DN from GoKinD population and 850 African-American subjects with T2D-associated end-stage renal disease (ESRD), or with hypertensive (non-diabetic) ESRD, and nondiabetic controls. Seven tag SNP markers derived from HapMap data (phase II) were genotyped. TRPC1 gene expression was examined using real time RT-PCR.
Results
No significant association of TRPC1 DNA polymorphisms with DN or ERSD was found in GoKinD and African-American populations. TRPC1 gene mRNA expression in kidney was found to be trendily reduced in 12-week and significantly in 26-week-old db/db mice.
Conclusions
TRPC1 genetic polymorphism may not fundamentally contribute to the development of DN, while reduction of the gene expression in kidney may be a late phenomenon of DN as seen in diabetic animal models.
doi:10.1159/000157627
PMCID: PMC2698220  PMID: 18802326
TRPC1 gene; Single-nucleotide polymorphism; Diabetic nephropathy; End-stage renal disease; Diabetes types 1 and 2
4.  Evaluation of the association between the common E469K polymorphism in the ICAM-1 gene and diabetic nephropathy among type 1 diabetic patients in GoKinD population 
BMC Medical Genetics  2008;9:47.
Background
The ICAM-1 gene is a strong positional and biological candidate for susceptibility to the development of T1D and DN. We have recently demonstrated that SNP rs5498(E469K) confers susceptibility to the development of T1D and might be associated with DN in Swedish Caucasians. The present study aimed to further evaluate the association between the ICAM-1 genetic polymorphisms and DN.
Methods
Two common non-synonymous SNPs, including rs5498(E469K) and rs1799969(R241G), in the ICAM-1 gene were genotyped in 662 (312 female/350 male) T1D patients with DN and 620 (369/251) without DN. All patients were selected from the GoKinD study.
Results
Genotype distributions of both SNPs were in Hardy-Weinberg equilibrium but SNP rs5498(E469K) had high heterozygous index. In this SNP, the heterozygosity and positivity for the allele G were found to be significantly associated with DN in female T1D patients (P = 0.010, OR = 0.633, CI 95% 0.447–0.895 and P = 0.026, OR = 0.692, CI 95% 0.500–0.958). Furthermore, the female patients without DN carrying three genotypes A/A, A/G and G/G had different cystatin levels (0.79 ± 0.17, 0.81 ± 0.14 and 0.75 ± 0.12 mg/L, P = 0.021). No significant association of SNP rs1799969 (R241G) with DN was found.
Conclusion
The present study provides further evidence that SNP rs5498(E469K) in the ICAM-1 gene presents a high heterozygous index and the allele G of this polymorphism may confers the decreased risk susceptibility to the development of DN in female T1D patients among the GoKinD population.
doi:10.1186/1471-2350-9-47
PMCID: PMC2424038  PMID: 18505543

Results 1-4 (4)